Другим недостатком непараметрической процедуры является большая вероятность получения случайного выбора. Некоторые испытуемые, руководствуясь личным мотивом, нередко пишут в опросниках «выбираю всех». Ясно, что такой ответ может иметь только два объяснения: либо у испытуемого действительно сложилась такая обобщенная аморфная и недифференцированная система отношений с окружающими (что маловероятно), либо испытуемый заведомо дает ложный ответ, прикрываясь формальной лояльностью к окружающим и к экспериментатору (что наиболее вероятно). Анализ подобных случаев заставил некоторых исследователей попытаться изменить саму процедуру применения метода и таким образом снизить вероятность случайного выбора. Так родился второй вариант – параметрическая процедура с ограничением числа выборов. Испытуемым предлагают выбирать строго фиксированное число из всех членов группы. Например, в группе из 25 человек каждому предлагают выбрать лишь 4 или 5 человек. Величина ограничения числа социометрических выборов получила название «социометрического ограничения» или «лимита выборов». Многие исследователи считают, что введение «социометрического ограничения» значительно превышает надежность социометрических данных и облегчает статистическую обработку материала. С психологической точки зрения социометрическое ограничение заставляет испытуемых более внимательно относиться к своим ответам, выбирать для ответа только тех членов группы, которые действительно соответствуют предлагаемым ролям партнера, лидера или товарища по совместной деятельности. Лимит выборов значительно снижает вероятность случайных ответов и позволяет стандартизировать условия выборов в группах различной численности в одной выборке, что и делает возможным сопоставление материала по различным группам. В настоящее время принято считать, что для групп в 22-25 участников минимальная величина «социометрического ограничения» должна выбираться в пределах 4-5 выборов. Существенное отличие второго варианта социометрической процедуры состоит в том, что социометрическая константа (N-1) сохраняется только для системы получаемых выборов (т.е. из группы к участнику). Для системы отданных выборов (т.е. в группу от участника) она измеряется новой величиной d (социометрическим ограничением). Введением величины d можно стандартизировать внешние условия выбора в группах разной численности. Для этого необходимо определять величину d по одинаковой для всех групп вероятности случайного выбора. Формулу определения такой вероятности предложили в свое время Дж.Морено и Е.Дженнингс: — 94 —
|