где p – оценка вероятности быть выбранным в данной группе; q – оценка вероятности оказатьcя отвергнутым в данной группе; b – отклонение количества полученных индивидами выборов от среднего их числа, приходящегося на одного члена группы; p и q, в свою очередь, определяются при помощи следующих формул:
где N – количество участников в группе; M – среднее количество выборов, полученных одним участником. M вычисляется при помощи формулы:
где d – общее количество выборов, сделанных членами данной группы. b определяется по формуле: b = (N – 1) p q Проиллюстрируем процедуру расчетов. Исследовали группу в 31 человек, участники которой в общей сложности сделали 270 выборов. Найдем среднее количество выборов, приходящихся на одного человека в группе:
Определим оценку вероятности быть избранным в данной группе:
Вычислим среднее квадратное отклонение: b = 30 ? 0,3 (1 – 0,3) Подсчитаем коэффициент асимметричности:
Теперь по таблице определим величину t отдельно для правой и левой частей распределения. В левой части таблицы приведены значения для нижней границы доверительного интервала, а в правой – для верхней. Для обеих границ (верхней и нижней) значения даны для трех различных вероятностей допустимой ошибки: р ? 0,05;р ? 0,01;р < 0,001
Таблица. Значения по Сальвосу
Поскольку в таблице нет значения, равного 0,16, а есть только значения 0,1 и 0,2, то выберем поправочные коэффициенты, находящиеся между этими табличными значениями. Для ОД=0,1 поправочный коэффициент составит (-1,62), а для Од=0,2 – (-1,59). С учетом того, что реальное значение Од=0,16, возьмем поправочный коэффициент t промежуточного значения и примем его равным (-1,60) (левая половина таблицы). Проделав подобную операцию и в правой части таблицы, получим второй поправочный коэффициент 1,69, величина которого расположена между табличными значениями для Од=0,1 и Од=0,2. Верхнюю критическую границу вычислим, подставив в формулу значение t из правой части таблицы: Xверхн = 9,0 + 1,69 х 2,51 = 13,24. — 98 —
|