Общая психодиагностика

Страница: 1 ... 5455565758596061626364 ... 324

Рис. 1.Соотношение индивидуальной и общей вариации тестовых баллов

Роль косвенных эталонов в психометрике выполняют сами тесты: в том смысле, в каком труд­ность задач можно рассматривать как величину, прямо пропорцио­нально сопряженную со способностью (чем труднее задача, тем выше должен быть уровень способности, требуемый для ее решения). Ана­логом понятия «трудность» для «ли-вопросов»[10] опросника является «сила»: более «сильные» высказывания (в логическом смысле) вызы­вают подтверждение (согласие) у меньшего числа испытуемых. Ни трудность, ни силу пунктов теста нельзя выявить иначе, чем с помо­щью проведения теста. Операциональным определением трудности оказывается «процентильная мера»: процент испытуемых, справив­шихся с заданием теста (или ответивших «верно» на «ли-вопрос»). Чем меньше процент, тем выше трудность.

Кривая распределения тестовых баллов отражает свойства пунк­тов, из которых составлен тест. Если кривая имеет правостороннюю асимметрию, то в тесте преобладают трудные задания; если кривая имеет левостороннюю асимметрию, значит, большинство пунктов в тесте - легкие (слабые) (рис. 2).

Рис. 2.Асимметрии распределения тестовых баллов

Тесты первого типа плохо дифференцируют испытуемых с низ­ким уровнем способностей: все эти испытуемые получают примерно одинаковый низкий балл. Тесты второго типа, наоборот, хуже диффе­ренцируют испытуемых с высоким уровнем способностей.

Если пункты обладают оптимальным уровнем трудности (силы), то кривая распределения зависит от того, насколько пункты однород­ны. Если пункты разнородны (исход по одному пункту не предопре­деляет исход по другому), то мы получаем тест в виде последователь­ности независимых испытаний Бернулли. Как известно из математи­ческой статистики, при достаточно большом количестве независимых испытаний с двумя разновероятными исходами кривая биномиально­го распределения (кривая суммарного балла) по закону больших чи­сел автоматически приближается к кривой нормального распределе­ния (центральная предельная теорема Муавра - Лапласа). Если тест содержит разнородные задания примерно равного уровня трудности (именно такие задания и подбираются для измерения интегральных свойств личности), то нормальность распределения суммарных бал­лов возникает автоматически - как артефакт самой процедуры под­счета суммарных баллов. При этом, конечно, форма кривой распре­деления баллов не позволяет говорить о реальной форме распределе­ния измеряемого свойства, каким оно является само по себе - в ши­рокой популяции испытуемых. Нормальность распределения есть артефакт, прямое следствие направленного отбора пунктов с задан­ными свойствами.

— 59 —
Страница: 1 ... 5455565758596061626364 ... 324