В оптимальном тесте набор и последовательность заданий организуются таким образом, чтобы повысить долю постоянного компонента и сократить долю случайного в величине суммарного балла. Тем не менее, несмотря на различные статистические ухищрения, суммарный балл в психологических измерениях содержит несравненно большую долю случайного компонента, чем в обычных физических измерениях. В силу этого суммарный балл оказывается определенным лишь в известных пределах, заданных ошибкой измерения. Для того чтобы оценить эффективность, дифференциальную ценность всей процедуры измерения, необходимо соотнести размеры ошибки измерения с размерами разброса суммарных баллов, вызванных индивидуальными различиями в измеряемой характеристике между испытуемыми. В терминах Статистики речь идет о сравнении так называемой истинной дисперсии распределения суммарных баллов с дисперсией ошибки. Именно этим обусловлен необходимый интерес психометристов к распределению суммарных баллов. Поэтому анализ распределения необходим не только при использовании статистических норм, но и в случае абсолютных и критериальных норм. Как известно, частотное распределение суммарных баллов имеет удобную графическую интерпретацию в виде кривых распределений: гистограммы и кумуляты (см., в частности, удачное популярное введение в описание распределений в книге: Кимбл Г., 1982, с. 55-70). В случае гистограммы по оси абсцисс откладываются «сырые очки» -первичные показатели суммарных баллов, возможных для данного теста, по оси ординат - относительные частоты (или проценты) встречаемости баллов в выборке стандартизации (Анастази А., 1982, с. 66). Как известно, для «колоколообразной» кривой нормального распределения дисперсия визуализируется как параметр, ответственный за «распластанность» графика плотности вероятности (теоретического аналога эмпирической кумуляты) вдоль оси X. Чтобы визуализировать дисперсию ошибки измерения, нужно было бы многократно провести тест с одним испытуемым и построить графическое распределение частот его индивидуальных баллов (рис. 1). Очевидно, что дифференцирующая способность теста сводится к нулю, если кривые, иллюстрирующие «истинную» и «ошибочную» дисперсии» совпадают. Как видим, анализ распределения тестовых баллов необходим уже для анализа надежности теста (см. раздел 3.2). Проблема меры в психометрике и свойства пунктов теста. В физических измерениях калибровка шкалы производится на основе контроля за равномерным варьированием измеряемого свойства в эталонных объектах. Носителем меры является эталон- физический объект, стабильно сохраняющий заданную величину измеряемого свойства. В дифференциальной психометрике такие физические эталоны отсутствуют: мы не располагаем индивидами, которые были бы постоянными носителями заданной величины измеряемого свойства. — 58 —
|