Общая психодиагностика

Страница: 1 ... 5354555657585960616263 ... 324

В оптимальном тесте набор и последовательность заданий орга­низуются таким образом, чтобы повысить долю постоянного компо­нента и сократить долю случайного в величине суммарного балла. Тем не менее, несмотря на различные статистические ухищрения, суммарный балл в психологических измерениях содержит несравнен­но большую долю случайного компонента, чем в обычных физичес­ких измерениях. В силу этого суммарный балл оказывается опреде­ленным лишь в известных пределах, заданных ошибкой измерения.

Для того чтобы оценить эффективность, дифференциальную цен­ность всей процедуры измерения, необходимо соотнести размеры ошибки измерения с размерами разброса суммарных баллов, вызван­ных индивидуальными различиями в измеряемой характеристике между испытуемыми. В терминах Статистики речь идет о сравнении так называемой истинной дисперсии распределения суммарных баллов с дисперсией ошибки. Именно этим обусловлен необходимый интерес психометристов к распределению суммарных баллов. Поэто­му анализ распределения необходим не только при использовании статистических норм, но и в случае абсолютных и критериальных норм.

Как известно, частотное распределение суммарных баллов имеет удобную графическую интерпретацию в виде кривых распределений: гистограммы и кумуляты (см., в частности, удачное популярное вве­дение в описание распределений в книге: Кимбл Г., 1982, с. 55-70). В случае гистограммы по оси абсцисс откладываются «сырые очки» -первичные показатели суммарных баллов, возможных для данного теста, по оси ординат - относительные частоты (или проценты) встре­чаемости баллов в выборке стандартизации (Анастази А., 1982, с. 66). Как известно, для «колоколообразной» кривой нормального распре­деления дисперсия визуализируется как параметр, ответственный за «распластанность» графика плотности вероятности (теоретического аналога эмпирической кумуляты) вдоль оси X. Чтобы визуализиро­вать дисперсию ошибки измерения, нужно было бы многократно про­вести тест с одним испытуемым и построить графическое распреде­ление частот его индивидуальных баллов (рис. 1).

Очевидно, что дифференцирующая способность теста сводится к нулю, если кривые, иллюстрирующие «истинную» и «ошибочную» дисперсии» совпадают. Как видим, анализ распределения тестовых баллов необходим уже для анализа надежности теста (см. раздел 3.2).

Проблема меры в психометри­ке и свойства пунктов теста. В физических измерениях калибров­ка шкалы производится на основе контроля за равномерным варьиро­ванием измеряемого свойства в эта­лонных объектах. Носителем меры является эталон- физический объект, стабильно сохраняющий заданную величину измеряемого свойства. В дифференциальной психометрике такие физические эталоны отсутствуют: мы не располагаем индивидами, которые были бы постоянными носителями за­данной величины измеряемого свойства.

— 58 —
Страница: 1 ... 5354555657585960616263 ... 324