Ранняя классика

Страница: 1 ... 209210211212213214215216217218219 ... 416

Выше мы приводили текст Tim. 31c - 32a. Этот текст прямо формулирует то, что мы теперь называем золотым делением. Но ни сам Платон не употребляет такого термина, ни его последующее изложение не показывает в отчетливой форме способ применения этого закона. Поэтому, строго говоря, использование этого закона у Платона является не столько сознательным и намеренным, сколько интуитивным и непосредственно-эстетическим. Но дело этим не кончается.

Как известно, Платон строит свой космос из прямоугольных треугольников двух видов - с равными катетами и с неравными катетами. К первому золотое деление совсем неприложимо; что касается второго рода треугольников, то их может быть бесчисленное множество, но Платон почему-то выбирает именно тот, который получается из разделения равностороннего треугольника пополам его высотой. В таком прямоугольном треугольнике гипотенуза вдвое больше меньшего из катетов, а отношение его катетов есть 1:3. Последнее отношение близко к золотому сечению и до известной степени может его заменить. Руководствовался ли Платон подобными соображениями при выборе такого треугольника, сказать трудно за полным отсутствием у него всяких указаний на этот предмет.

Более ясен другой пункт. Как известно, из равнобедренных треугольников у Платона образуется куб, а из треугольников второго рода - пирамида, октаэдр и икосаэдр. Однако есть еще одно - пятое - правильное геометрическое тело, это додекаэдр (двенадцатигранник), которое Платон употребляет "для очертания (diadzographon) вселенной" (Tim. - 55c), в то время как первые четыре конструируют собою четыре космические стихии. Додекаэдр, следовательно, есть форма неба; прочие же многогранники характеризуют собою то, что внутри неба, то, что в самом космосе. Додекаэдр точно построен по закону золотого деления. Это особенно ярко видно на так называемой пентаграмме, которая представляет собою совокупность диагоналей додекаэдра, или геометрическую фигуру, образованную последовательным соединением вершин додекаэдра через одну. Элементарное построение показывает, что сторона додекаэдра так относится к его диагонали, как расстояние от вершины до ближайшей точки пересечения двух диагоналей относится к стороне додекаэдра и как расстояние между двумя соседними точками пересечения диагоналей к расстоянию от вершины до ближайшей точки пересечения диагоналей. Целым является здесь диагональ, большим - сторона додекаэдра, а меньшим - расстояние от вершины до ближайшей точки пересечения диагоналей. Интересным является также и то, что точки пересечения диагоналей додекаэдра составляют совокупность вершин правильного пятиугольника, стороны которого лежат на сторонах пентаграммы (т.е. на диагоналях основного додекаэдра).

— 214 —
Страница: 1 ... 209210211212213214215216217218219 ... 416