Об искусстве рассуждения

Страница: 1 ... 111112113114115116117118119120121 ... 196

Но, спрашивает Д'Аламбер, разве вполне доказано, что Земля первоначально была жидкой? А если, будучи жид­кой, она и приняла форму, предписываемую ей данной ги­потезой, действительно ли несомненно, что она сохранила таковую? Части жидкого сфероида должны были бы распо­лагаться в более или менее правильном порядке, его по­верхность была бы гомогенной; однако мы не замечаем на поверхности Земли ни гомогенности, ни правильности в распределении ее частей. Наоборот, все кажется словно случайно разбросанным как в той части недр Земли, кото­рая нам известна, так и на поверхности нашего земного шара; как же допустить, что первоначальная форма Земли не претерпела изменений, когда совершенно очевидны сле­ды огромных потрясений?

Итак, теория [Гюйгенса и Ньютона] основывается на предположениях, доказать которые невозможно и которые принимают за несомненные только потому, что не видно, почему бы им быть ошибочными.

Ложные рассуждения,

выдвигаемые в защиту

данной теории

Эту теорию желали подтвердить наблюдениями и измерением граду­сов в различных пунктах; но рассуж­дения подчас бывали ошибочными, измерения мало согласовывались друг с другом, а трудно­сти все умножались.

Говорили: «Земля имеет правильную форму и ее мери-

164


дианы одинаковы, если экватор в точности круг; ведь кру­гообразность земной тени при лунных затмениях доказы­вает кругообразность экватора».

Поразительно, что лица, рассуждающие подобным образом, убеждены, что меридианы не являются кругами. Но как же они хотят, чтобы тень Земли считалась до­казательством кругообразности экватора и вместе с тем не являлась доказательством кругообразности мериди­анов?

Кроме того, говорят так: «Отправившись из одинаковых широт и проходя равные расстояния, мы будем наблюдать одинаковые высоты полюса. Следовательно, меридианы одинаковы и Земля правильной формы».

Те, кто так говорит, неявно предполагают, что измере­ния на поверхности Земли и астрономические наблюдения могут быть в высшей степени точными, Ведь не могут же они мыслить столь непоследовательно, чтобы говорить: «Все эти измерения и наблюдения неизбежно подвержены ошибкам; следовательно, мы должны вычислять по ним кривизну меридианов». Я, однако, допускаю, что данные рассуждения были бы обоснованы, если бы в итоге измере­ния большого числа меридианов на одинаковой широте полученные результаты были почти одинаковыми: подоб­ная согласованность доказала бы точность наблюдений. Но из шести измеренных градусов лишь два были на одной широте: градус Франции и градус Италии, притом было установлено, что они различаются более чем на 70 туазов.

— 116 —
Страница: 1 ... 111112113114115116117118119120121 ... 196