Интеллектуальные уловки

Страница: 1 ... 8081828384858687888990 ... 226

Из-за этих злоупотреблений мы часто встречаем у постмодернистских авторов ссылку на теорию хаоса как на революционную составляющую против ньютоновской механики — обозначенной как «линейная» — или на квантовую механику как на пример нелинейной теории160. На самом деле так называемое ньютоновское «линейное мышление» замечательно использует нелинейные уравнения; а также многие примеры из теории хаоса взяты из ньютоновской механики, и изучение хаоса представляет собой своеобразное возрождение ньютоновской механики как предмета научного исследования. А фундаментальное уравнение квантовой механики Шредингера — пример линейного уравнения; и квантовая механика, которая часто приводится в качестве примера «науки постмодерна» — на самом деле является единственным известным (по крайней мере, из известных нам) примером не просто линейного приближения к более фундаментальной нелинейной теории, а последовательно линейной теорией.

Однако чаще всего речь идет о неверном понимании связи между линейностью, хаосом и существованием определенного решения уравнения. Нелинейные уравнения, как правило, труднее для разрешения, чем линейные, но это не всегда: существуют очень трудные проблемы решения линейных уравнений так же, как очень простые решения для нелинейных. Например, уравнения Ньютона для решения проблемы Кеплера с двумя небесными телами (Солнцем и одной планетой) — нелинейные, однако решаются однозначным образом. Однако, чтобы говорить о хаосе, необходимо , чтобы уравнение было нелинейным и (мы немного упрощаем) имелось бы не единственное решение, но эти два условия не являются достаточными — ни по отдельности, ни вместе — для того, чтобы говорить о хаосе. То есть, в противоположность распространенному мнению, нелинейная система не обязательно является хаотичной.

Трудностей и заблуждений становится больше, когда дело касается применения математической теории хаоса к конкретным ситуациям в физике, биологии или социальных науках161. В самом деле, следует иметь представление о соответствующих переменных и типе их эволюции; к тому же трудно бывает найти математическую модель одновременно достаточно простую для исследования и способную адекватно описать выбранный объект. Впрочем эти проблемы встают перед математической теорией каждый раз, когда она применяется к реальности (достаточно вспомнить теорию катастроф).

Часто можно наблюдать совершенно фантастические попытки так называемого «применения» хаоса, например, к анализу прибыли предприятия или к литературе. Иногда вместо хорошо разработанной математически теории хаоса имеют ввиду только разрабатываемые теории сложности и самоорганизации, что еще больше запутывает ситуацию.

— 85 —
Страница: 1 ... 8081828384858687888990 ... 226