(29) Лакан ссылается на хорошо известный факт того, что нельзя делить на нуль. Но серьезная проблема заключается в том, что он смешивает пропозицию с функцией. Пропозиция — это декларативная фраза, например, «Жан любит шоколад». Функция же — это некоторое правило, машина, так сказать — преобразующая входные данные (обычно числа) в выходные: например, f(x)=l/x преобразует число в обратную величину. В данном случае Лакан смешивает истинность или ложность пропозиции Ф(х) с осмысленным или бессмысленным характером функции f(x) для некоторого данного значения переменной х. (Мимоходом отметим, что функция 1/х не является экспоненциальной функцией). (30) Это точно. Черта ` обозначает отрицание («ложно, что») и поэтому применяется лишь к полным пропозициям, а не к отдельным кванторам (Ах или `х). Можно было бы предположить, что Лакан хочет сказать Ех`· Фх` и Ах ` · Фх` — хотя эти формулы были бы логически эквиваленты начальным пропозициям Ах · Фх и Ех · Фх` — но он намекает, что он имел в виду совсем не это банальное переписывание. Каждый волен вводить новые обозначения, но при условии, что он объяснит их значение. 3. Юлия Кристева * (31) Похоже, это утверждение неявно ссылается на так называемый лингвистический тезис «Сепира-Уорфа», то есть, grosso modo, на идею, будто бы наш язык радикально обуславливает наше мировоззрение. Этот тезис сегодня весьма серьезно критикуется некоторыми лингвистами: см., например, Линкер (1995, с. 57–67). (32) Что такое мощность континуума? Существует много видов бесконечных множеств. Для начала можно сказать, что существует так называемая «счетная» бесконечность, например, множество целых положительных чисел: 1, 2, 3… Все множества, элементы которых можно поставить в однозначное соответствие с целыми числами, также являются счетными. Георг Кантор, однако, доказал, что не существует однозначного соответствия между целыми числами и действительными. Поэтому последние «более многочисленны», нежели целые. Говорят, что действительные числа обладают «кардинальным числом (или мощностью) континуума», так же, как и все множества, которые можно поставить в однозначное соответствие с ними. Отметим, что можно установить (что, быть может, с первого взгляда кажется удивительным) однозначное соответствие между всеми действительными числами и действительными числами, содержащимися в некотором интервале: например, в интервале чисел, больших нуля и меньших единицы или больших нуля и меньших двух и т. д. В более общем виде можно сказать, что каждое бесконечное множество может быть поставлено в однозначное соответствие с некоторыми из своих подмножеств. — 184 —
|