Интеллектуальные уловки

Страница: 1 ... 178179180181182183184185186187188 ... 226

(23) Действительное число называется «иррациональным», если оно не рационально, то есть если оно не может быть выражено в качестве отношения двух целых чисел: таковы, к примеру, квадратный корень из двух или p. (Очевидно, что нуль является целым числом, то есть по необходимости рациональным ). «Мнимые» же числа вводятся для решения уравнений, включающих полиномы, которые не имеют решения среди действительных чисел: например, x 2 + 1 = 0, одно решение которого может быть записано как i = ?-1, а другое как — i .

(24) Истолкование «алгоритма» Лакана, почти такое же смешное, как и у него самого, см. в Нанси и Лаку-Лабарт (1990, часть I, гл. 2).

(25) Последняя фраза, возможно, является намеком, впрочем достаточно туманным, на технический метод, используемый в математической логике для определения натуральных чисел (1, 2, 3…) в терминах множеств: 1 отождествляется с пустым множеством ? (то есть с множеством, не имеющим ни одного элемента); затем 2 отождествляется с множеством [?] (то есть с множеством, имеющим в качестве единственного элемента множество ?); затем 3 отождествляется с множеством [?, [?]], (то есть множеством, имеющим два элемента — ? и [?]); и так далее.

(26) Парадокс, на который ссылается Лакан, был введен Бертраном Расселом (1872–1970). Отметим сперва, что большинство множеств не содержат сами себя в качестве элементов. Например, множество всех стульев не является стулом, множество всех натуральных чисел не является натуральным числом. Напротив, множество всех абстрактных идей является абстрактной идеей и т. д. Рассмотрим теперь множество всех множеств, которые не содержат самих себя в качестве элементов.

Содержит ли оно само себя? Если ответ — да, то оно не может принадлежать множеству всех множеств, которые не содержат себя в качестве собственных элементов, следовательно, ответ должен быть нет. Но если ответ — нет, тогда оно должно принадлежать множеству всех множеств, которые не содержат себя, значит ответ должен быть да. Чтобы выйти из этого парадокса логики заменили наивное понятие множества различными аксиоматическими теориями.

(27) Это, возможно, намек на другой парадокс, разработка которого принадлежит Георгу Кантору (1845–1918), парадокс несуществования «множества всех множеств».

(28) В математической логике символ х означает «для всякого х», а символ ?х означает «существует по крайней мере один х такой, что»; они, соответственно, называются «квантором всеобщности» и «квантором существования». Затем Лакан пишет Ах и Ех для обозначения тех же самых понятий.

— 183 —
Страница: 1 ... 178179180181182183184185186187188 ... 226