Интеллектуальные уловки

Страница: 1 ... 177178179180181182183184185186187 ... 226

Если отложить в сторону мистификации Лакана, то окажется, что отношение между топологией и структурой легко понять, но это отношение зависит от того, что понимать под «структурой». Если понимать ее широко — как, например, лингвистическую структуру, социальную и т. д. — тогда это понятие, очевидно, никак не может быть сведено к чисто математическому понятию «топологии». Если же, напротив, понимать «структуру» в ее строго математическом смысле, мы легко заметим, что топология задает особый тип структуры, причем существуют и другие типы: структура порядка, структура группы, структура векторного пространства, структура многообразия и т. д.

(18) Если эти две фразы и имеют смысл, то они не имеют ничего общего с геометрией.

(19) Компактность — это важное техническое понятие в топологии, которое не так просто объяснить. Скажем лишь то, что к девятнадцатому веку математики (Коши, Вейерштрасс и другие) поставили математический анализ на прочное основание, придав точный смысл понятию предела . Вначале эти пределы использовались для последовательностей действительных чисел . Постепенно стало понятно, что это понятие надо распространить на пространства функций (например, для того, чтобы изучать дифференциальные или интегральные уравнения). Топология своим рождением (а родилась она к 1900 году) частично обязана этим исследованиям. Среди топологических пространств можно выделить компактные пространства , которыми являются те (мы несколько упрощаем, ограничиваясь метрическими пространствами), в которых каждая последовательность элементов допускает существование последовательности более низкого порядка , обладающей пределом. Другое определение (эквивалентность которого первому можно доказать) покоится на свойствах пересечения бесконечных собраний закрытых множеств. В частном случае подмножеств евклидовых пространств конечных измерений множество является компактным, если и только если оно закрыто и ограничено .

(20) В этой фразе Лакан дает неправильное определение открытого множества и совершенно лишенное смысла «определение» предела . Но это лишь небольшие неточности по сравнению с общей путаницей в его речи.

(21) Этот абзац — чистое педантство: очевидно, если множество конечно, его можно в принципе «посчитать» и «упорядочить». Все споры в математике о счетном (см. ниже сноску 32) или о возможности упорядочения множеств относятся к бесконечным множествам.

(22) Насколько мы знаем, этот семинар был опубликован лишь в английском переводе. Мы сделали обратный перевод на французский.

— 182 —
Страница: 1 ... 177178179180181182183184185186187 ... 226