91 ставлены из индивидов: это будет первым типом классов. Затем мы перейдём к классам, членами которых являются классы первого типа: это будет второй тип. Затем, мы перейдём к классам, членами которых являются классы второго типа: это будет третий тип, и т.д. Для класса одного типа никогда невозможно быть или не быть тождественным с классом другого типа. Это применимо к вопросу, который я обсуждал немного ранее, относительно того, как много предметов существует в мире. Предположим, в мире имеется три индивида. Тогда, как я объяснял, существует 8 классов индивидов. Классов классов индивидов будет 28 (т.е. 256), а классов классов классов индивидов 2256, и т.д. Вы не получите какого-то вырастающего отсюда противоречия, когда задаёте себе вопрос: 'Существует или нет наибольшее кардинальное число?', ответ всецело зависит от того, ограничиваетесь ли вы одним типом, или же нет. В рамках любого заданного типа наибольшее кардинальное число существует, а именно, число объектов данного типа, но вы всегда способны получить большее число, переходя к следующему типу. Следовательно, нет столь большого числа, но вы можете получить большее число подходящего высокого типа. Здесь у вас есть две стороны этого спора: одна, когда тип задан, и другая, когда тип не задан. Ради краткости я говорил так, как если бы все эти различные типы предметов существовали реально. Конечно, это чепуха. Существуют индивиды, но при переходе к классам, классам классов и классам классов классов говорят о логических фикциях. Когда я говорю, что таких предметов нет, это снова некорректно. Бессмысленно сказать: 'Существуют такие предметы', в том же самом смысле слова 'существуют', в котором вы можете сказать: 'Существуют индивиды'. Если я говорю: 'Существуют индивиды' и 'Существуют классы', два выражения 'существуют' в этих двух пропозициях должны будут иметь различные значения, и если они имеют подходящие различные значения, обе пропозиции могут быть истинными. Если, с другой стороны, слово 'существует' используется в обеих пропозициях в одинаковом смысле, тогда по крайней мере одно из этих высказываний должно быть вздором, не ложью, но вздором. Тогда возникает вопрос, что же представляет собой тот смысл, в котором можно сказать: 'Существуют классы', или , другими словами, что же вы подразумеваете высказыванием, в которое, как кажется, входят классы? Прежде всего, что предпочли бы вы сказать о классах? Как раз то же самое, что требуется вам для того, чтобы говорить о пропозициональных функциях. Вы хотите сказать о пропозициональной функции, что она иногда является истинной. Это то же самое, как если о классе говорят, что он — 75 —
|