Обнаружение соотношений дополнительного характера является немаловажной задачей и в психологии, где условия для анализа и синтеза переживаний очень сходны с ситуацией, имеющей место в атомной физике. Фактически использование слов вроде мысли и чувства , в равной мере неизбежных для описания психических переживаний, относится к взаимоисключающим ситуациям, характеризуемым различным проведением линии, разграничивающей субъект и объект. В частности, выделение отдельного места чувству свободы воли связано с тем обстоятельством, что ситуации, в которых мы сталкиваемся со свободой воли, несовместимы с психологическими ситуациями, в которых предпринимаются обоснованные попытки причинного анализа. Другими словами, когда мы говорим «я хочу», мы тем самым отвергаем логическую аргументацию. (Н. Бор . О понятиях причинности и дополнительности. Собр. науч. тр. Т. 2) Проблема свободы в квантовой механике может обсуждаться с использованием фейнмановского формализма «интегрирования по путям», — пожалуй, наиболее популярного сейчас варианта математического аппарата квантовой механики и квантовой теории поля. Как мы знаем, электрон представляет собой частицу, т. е. неделимый объект, проявляющийся всегда только как целое и характеризуемый вполне определенными значениями электрического заряда, момента вращения (спина), массы и т. д. Однако утверждается, что под действием заданных внешних сил он движется не по вполне определенной траектории в соответствии с ньютоновской механикой, а с определенными вероятностями по всем траекториям сразу . Великий в совете и сильный в делах, Которого очи отверсты на все пути сынов человеческих… (Иеремия 32:19) Все, что мы можем найти — это вероятность нахождения квантовой частицы в данной точке в данный момент времени. Интерференционные (волновые) явления обусловлены тем, что, как уже упоминалось, эта вероятность не равна сумме вероятностей движения по каждой траектории: складываются не вероятности, а комплексные числа, называемые амплитудами вероятности ; суммарная вероятность есть квадрат модуля суммарной амплитуды. При этом бессмысленно говорить о значении скорости электрона в данной точке пространства, поскольку он движется одновременно во многих (и даже в бесконечно большом числе) направлений. Типичная траектория электрона представляет собой непрерывную линию, ни в одной точке не имеющую касательной (интересно отметить, что введение в физику подобных «математических монстров» было первым крупным научным достижением Н. Винера, прославившегося впоследствии как «отец» кибернетики). — 125 —
|