Другая особенность четно‑нечетных чисел состоит в том, что если делитель – нечетное число, частное всегда будет четным, а если делитель – четное число, частное будет нечетным. Например, если 18 делить на 2, четный делитель, частное 9 будет нечетно, или если 18 разделить на 3, частное 6 будет четным. Четно‑нечетные числа еще примечательны тем, что каждый термин в ряду является половиной суммы терминов по обе стороны его в ряду. Например, 10 есть половина суммы 6 и 14; 18 есть половина суммы 14 и 22; и 6 есть половина суммы 2 и 10. Нечетно‑нечетные числа или нечетно‑четные являются компромиссом между четно‑четными и четно‑нечетными числами. В отличие от четно‑четных они не могут последовательным делением пополам привести к 1, и в отличие от четно‑нечетных они позволяют более чем однократное деление пополам. Нечетно‑нечетные числа образуются умножением четно‑четных, которые больше 2, на нечетные числа больше 1. Из книги Т. Тэйлора «Теоретическая арифметика» РЕШЕТО ЭРАТОСФЕНА Решето – это математический прием, придуманный Эратосфеном около 230 г. до P. X. для отделения составных от несоставных нечетных чисел. Этот прием чрезвычайно прост в использовании, как только освоен. Все нечетные числа упорядочиваются по величине, как показано на второй снизу таблице, которая названа нечетные числа. Из таблицы видно, что каждое третье число, начиная с 3, делится на 3. Далее, каждое пятое число дели гея на 5. каждое седьмое число делится на 7, каждое девятое число делится на 9 и так далее до бесконечности. Этот процесс отсеивает то, что пифагорейцы называли простыми числами, то есть такими, которые не имеют других делителей, кроме 1 и самих себя. Они приведены на нижней таблице, называемой первичные и несоставные числа . В своей «Истории математики» Дэвид Смит говорит, что Эратосфен был одним из величайших мыслителей Александрии, и восхищенные поклонники называли его вторым Платоном. Эратосфен обучался в Афинах и был известен не только как автор «решета», но и как человек, вычисливший очень остроумным методом диаметр и окружность Земли. Его оценка диаметра расходится с современными данными всего лишь на 50 миль. Эти и другие достижения Эратосфена неоспоримо свидетельствуют о том. что в III веке до н. э. греческие математики знали не только о шарообразности Земли, но могли с большой точностью оценить ее размер и ее удаленность от Солнца и Луны. Аристарх Самосский, другой великий греческий астроном и математик, живший около 250 г. до P. X., с помощью философской дедукции, а также нескольких простых инструментов установил, что Земля вращается вокруг Солнца. Хотя Коперник верил, что он открыл этот факт, на самом деле он лишь установил то, что было известно семнадцатью веками ранее. — 185 —
|