В отличие от Кеплера, Декарт не любил долгих расчетов. Он предпочитал наглядно-геометрические рассуждения и хотел работать этим методом с любыми сложными кривыми, а не только с прямыми и окружностями, как делал Евклид. Для этой работы полезно уметь складывать, вычитать и умножать кривые между собой так же, как мы это делаем с числами. Пьер Ферма из Тулузы (1601–1665) по основной профессии был юристом, а математикой занимался на досуге, читая книги классиков или современников и размышляя о тех задачах, которые те не заметили или не сумели решить. Понятно, что при таком способе работы Ферма ни в одной области науки не был первым. В математический анализ он вошел вслед за Архимедом и Кеплером, в аналитическую геометрию – вслед за Декартом, в теорию вероятностей вслед за Паскалем, а в теорию чисел – вслед за Диофантом. Но в каждом случае Ферма добавлял в уже готовую или только рождающуюся науку столь важные открытия, что превзойти его результаты могли только гении, порою много десятилетий спустя. Например, Ферма заинтересовался простой задачей: при каких условиях функция достигает минимума или максимума в данной точке? Оказалось, что необходимо простое условие: производная от функции в этой точке должна быть равна нулю. В наши дни этот факт известен каждому старшекласснику. Но Ферма, распространив свое открытие на функции, зависящие от многих переменных, пришел к замечательному физическому открытию: свет движется по траектории, на которой производная по времени равна нулю. Значит, время движения света вдоль этой траектории – минимальное! Лишь сто лет спустя Пьер Мопертюи и Леонард Эйлер открыли аналог принципа Ферма в механике; это стало первым шагом к объединению механики с оптикой в рамках квантовой теории. Теорию чисел Ферма строил почти в одиночестве; из всех его современников только англичанин Джон Валлис интересовался ею. Но Ферма имел важное преимущество перед Валлисом и перед своим античным предшественником, Диофантом. Он хорошо знал аналитическую геометрию и оперировал уравнениями так же свободно, как числами. Поэтому он легко доказал «малую теорему Ферма» и узнал, что существуют конечные поля вычетов – системы чисел, устроенные (в смысле арифметики) еще удобнее, чем множество целых чисел. Развивая этот успех, Ферма заинтересовался пифагоровыми тройками чисел, целыми решениями уравнения (хn + уn = zn). Существуют ли целые решения уравнений (хn + уn = zn) при n › 2? Диофант не нашел ни одного решения для n = 3. Ферма доказал, что таких решений не может быть. Оставалось обобщить метод Ферма для других простых показателей: 5, 7, 11… К сожалению, Ферма не стал проводить в этих случаях подробные расчеты и поэтому не увидел удивительных алгебраических препятствий на своем пути. Например, при n = 5 необходимо использовать комплексные числа: это первым заметил в конце XVIII века Адриен Лежандр, а Ферма всю жизнь сомневался в полезности таких чисел! Далее, при n = 23 доказательство «большой теоремы Ферма» натолкнулось на неоднозначное разложение комплексных чисел определенного вида на простые множители. Эту новую революцию в алгебре вызвал Эрнст Куммер в середине XIX века. — 285 —
|