Нейропсихология счета, письма и чтения: нарушение и восстановление

Страница: 1 ... 8889909192939495969798 ... 206

Выписка из протокола

Больному дается число 10 и предлагается найти среди других чисел, лежащих перед ним, те, из которых можно составить число 10.

Больной. Повторите, я не понял, что мне делать.

Педагог. Вот число 10. Из каких чисел оно состоит?

Больной. Из каких, я все-таки не понимаю, 10 и 10.

Больному даются для решения примеры: 5 + 5 = ;2 + 8=;12-2 = . Больной правильно решил примеры.

Педагог. Из каких же чисел получается число 10?

Больной. Ага, наверное вот это и есть 5 и 5, 2 и 8, да? Но я все-таки хорошо не понимаю.

Педагог. Решите пример: от 11 отнять 4. (Больной медленно решает пример, неуверенно пишет 7.) Как вы решили пример?

Больной. Не знаю, интуитивно. Педагог. Что вы сделали с числом 4?

Больной. Ничего.

Педагог. Скажите, эта запись примера 11-4 = равноценна этой (11 - 1)-3 = ?

Больной. Нет... а в общем я ничего не понимаю, что вы делаете.

Педагог. Решите пример 7><4 = (Больной долго думает).

Больной. Кажется... 21... нет, 28, да? Я все забыл.

Педагог. А вы не вспоминайте, а решайте. Как можно иначе записать этот пример?

Больной. Не знаю.

Педагог. Так можно: 7 + 7 + 7 + 7 = ?

Больной. Нет, это же сложение, там нужно умножение.

Выписка из протокола

Педагог. Напишите, из каких чисел состоят следующие числа: 5, 2, 3, 6, 8, 9,10. (Больной правильно выполняет все задания). А как можно другим способом получить число 10?

Больной. 20 - 10 = 10, 15 - 5 = 10, 2 х 5 = 10, 30 : 3 = 10 и др.

Больному предлагается решить пример на умножение 15x5 развернутым способом. Больной пишет: (15+15) + (15+15) + 15 = 75

30_____30

Педагог. А как проверить правильность решения?

Больной. Это нужно 75 : 5 = 15.

Восстановлению умножения и деления было уделено особое внимание. Дело в том, что у больного в связи с распадом структуры числа было затруднено понимание взаимоотношений между числами в делении и умножении. Он утратил понимание обратной связи деления с умножением. Именно поэтому больной нередко умножение проверял делением, употребляя делитель в значении делимого (5 х 6 = 30, проверку 30 : 6 = 5 больной выполнял как 6: 30 = 5). Обучение этим видам арифметических действий велось начиная с максимально развернутой формы действия. Больной быстро понял и усвоил внутреннее содержание действий умножения и деления; к концу обучения они выполнялись на уровне шепотной речи сокращенным способом.

— 93 —
Страница: 1 ... 8889909192939495969798 ... 206