Логика мышления

Страница: 1 ... 2021222324252627282930 ... 95
  • альфа-ритм (от 8 до 13 Гц);
  • бета-ритм (от 15 до 35 Гц);
  • гамма-ритм (от 35 до 100 Гц);
  • дельта-ритм (от 0,5 до 4 Гц);
  • тэта-ритм (от 5 до 7 Гц);
  • сигма-ритм «веретена» (от 13 до 14 Гц).

Природу ритмов традиционно принято соотносить с осциляторными свойствами нейронов. Так, поведение одиночного нейрона описывается уравнениями Ходжкина-Хаксли (Hodgkin, 1952):

?????????????CmdVdt=Iion;dmdt=?m(V)(1?m)+?m(V)m;dhdt=?h(V)(1?h)+?m(V)h;dndt=?n(V)(1?n)+?m(V)n;

Iion=?gNam3h(V?VNa)?gkn4(V?Vk)?ge(V?Ve)?m(V)=0,1(25?V)/((exp(25?V)/10)?1)?m(V)=4exp(?V/18)?h(V)=0,07exp(?V/20)?h(V)=1/(1+exp((30?V)/10))?n(V)=0,01(10?V)/(1+exp((10?V)/10))?n(V)=0,125exp(?V/80)

Эти уравнения определяют автоволновой процесс, то есть предписывают нейрону генерировать импульсы. Модель Ходжкина-Хаксли сложна для моделирования. Поэтому существует достаточно много ее упрощений, сохраняющих основные генерирующие свойства. Наиболее популярные модели: Фитцхью-Нагумо (Fitzhugh, 1961), Моррис-Лекара (Morris C., Lecar H., 1981), Хиндмарш-Роуз (Hindmarsh J. L., and Rose R. M., 1984). Многие модели, например, Хиндмарш-Роуз позволяют смоделировать как пачечную активность, так и обособленные спайки (рисунок ниже).

Пачечная активность и спайки, возникающие при моделировании нейрона Хиндмарш-Роуз

Объединяя нейроны, генерирующие собственные импульсы, в конструкции, напоминающие строение реальной коры, удается воспроизвести различные эффекты, характерные для групповой активности реальных нейронов. Например, можно добиться глобальной синхронизации нейронной активности или вызвать появление волн. Наиболее известные модели: Вилсона-Кована (H.R. Wilson and J.D. Cowan, 1972) и Куромото (Kuramoto, 1984).

Электроэнцефалограмма фиксирует отголоски совместной активности нейронов, но понятно, что у этой активности есть определенная пространственно-временная организация. Методы оптического наблюдения за активностью коры позволяют увидеть ее в живую. У подопытного животного обнажают участок коры и вводят специальный краситель, чувствительный к изменениям электрического потенциала. Под воздействием суммарных колебаний мембранного потенциала нейронов такой краситель меняет свои спектральные свойства. И хотя эти изменения крайне малы, они, тем не менее, могут быть зафиксированы, например, с помощью диодного массива, выполняющего роль высокоскоростной видеокамеры. Оптические методы не позволяют заглянуть вглубь коры и проследить активность отдельных нейронов, но они дают возможность составить общее представление о течении волновых процессов на ее поверхности.

— 25 —
Страница: 1 ... 2021222324252627282930 ... 95