Логика мышления

Страница: 1 ... 1516171819202122232425 ... 95

Сеть свертки для распознавания рукописного текста (Y. LeCun and Y. Bengio, 1995)

Часть 2. Волновые нейронные сети

Фоновая активность

Вернемся к описанию работы реальных нейронов. Сигналы от одних нейронов через их аксоны поступают на входы других нейронов. В химических синапсах происходит выброс медиатора, который в зависимости от типа синапса оказывает либо активирующее, либо тормозящее воздействие на принимающий сигнал нейрон. Чувствительностью синапса, которая может меняться, определяется вклад этого синапса в общее возбуждение. Если суммарное воздействие превышает определенный порог, то происходит деполяризация мембраны и нейрон генерирует спайк. Спайк – это одиночный импульс, продолжительность и амплитуда которого не зависит от того, какая синаптическая активность его породила.

Самая простая модель, навеянная импульсной активностью нейрона, – это модель порогового сумматора. При этом, исходя из того, что спайк можно сопоставить с бинарным сигналом, полагают, что входы и выход сумматора принимают значения только 0 и 1. Если на входы такого формального нейрона подавать импульсную картину, повторяющуюся от такта к такту, то нейрон в зависимости от настройки его весов должен либо каждый такт выдавать ответный сигнал, либо молчать. Это вполне логично – постоянная входная картина соответствует постоянному результату на выходе.

Если попытаться приблизить модель порогового сумматора к реальности, то первое, что придется сделать – это допустить, что картина входной активности может быть не строго синхронна. То есть сигналы на разных входах могут кодироваться импульсами, имеющими каждый свою частоту. При таком допущении уже нельзя просто использовать мгновенную картину состояния входов. Потребуется подобрать показательный временной интервал и пользоваться накопленной за этот интервал картиной активности. При разных частотах входных сигналов на некоторых интервалах входные импульсы будут образовывать кучности, достаточные для активации нейрона, а на других давать разряжения, оставляя нейрон неактивным. Таким образом, ответ нейрона приобретет собственную частоту, которая будет зависеть от частоты входных сигналов и чувствительности соответствующих синапсов.

Такие рассуждения приводят нас к модели нейрона как линейного сумматора, в которой уровень сигналов на входах нейрона и его ответ описываются не двумя уровнями, а вещественными величинами, которые соответствуют частотам следования спайков. Переход к линейному сумматору позволяет сильно упростить моделирование и отчасти забыть про изначальную химическую природу нейронной активности.

— 20 —
Страница: 1 ... 1516171819202122232425 ... 95