Такая проблема узости проецирующих пучков существует не только для первичной зрительной коры, но и для всех остальных зон мозга. Количество волокон в проекционных путях много меньше количества нейронов, формирующих пространственную картину активности. Связи между зонами явно не в состоянии параллельно передать весь пространственно распределенный сигнал, а значит, требуется понимание того, как происходит сжатие и распаковка транслируемой по ним информации. Предположение о сканировании, хотя и не дает ответа на вопрос о самом механизме кодирования, тем не менее позволяет поставить перед собой правильные вопросы. Наша модель в объяснении ритмов мозга опирается на приведенное выше описание природы метаботропной активности. Использование представления о том, что в процесс создания ритмов вовлечены не только синапсы нейронов, но и метаботропные рецептивные кластеры, позволяет получить результат, качественно отличающийся от всех классических теорий. Но перед тем как перейти к описанию этого, хочу сделать предупреждение. Я сознательно буду описывать упрощенные идеализированные модели, ставя им в соответствие определенные процессы, свойственные реальному мозгу, но, не утверждая, что мозг работает именно так. Наша задача – показать базовые принципы, понимая, что эволюция ушла далеко вперед и их подлинная реализация значительно хитрее. Можно провести аналогию с развитием вычислительной техники. Современный компьютер достаточно сложен, и если мы начнем описывать базовые принципы классических вычислительных устройств, то окажется, что в чистом виде их уже практически невозможно встретить в современных системах. Базовое представление – процессор считывает из памяти программу и данные, выполняет над данными действия, предписанные программой, и записывает результаты обратно в память. А теперь добавьте к этому использование кэша различных уровней, многопоточность, гиперпоточность, параллельные вычисления с использованием локальной, групповой и общей памяти и тому подобное. И окажется, что трудно найти в реальном компьютере буквальное соблюдение простых правил. Собственно, все это надо учитывать, сопоставляя последующее описание с работой реального мозга. Итак, возьмем модель участка коры, на которой создадим компактный паттерн вызванной активности. Пока оставим вопрос, как возник этот паттерн. Просто будем полагать, что есть элементы, на которых присутствует постоянный импульсный сигнал. На рисунке ниже нейроны, образующие такой паттерн, помечены красным. В реальной коре это соответствует аксонам, передающим пачечную активность, то есть выдающим серию спайков с высокой частотой. Эти аксоны могут принадлежать нейронам этой же зоны коры, находящимся в состоянии вызванного возбуждения, либо они могут быть проекционными волокнами, идущими от других участков мозга. — 27 —
|