Логика мышления

Страница: 1 ... 1415161718192021222324 ... 95

Самое существенное отличие неокогнитрона от полносвязанного многослойного персептрона – это значительно меньшее количество используемых весов при том же количестве нейронов. Так получается за счет «трюка», который позволяет неокогнитрону определять образы независимо от их положения. Плоскость простых клеток – это по сути один нейрон, веса которого определяют ядро свертки. Это ядро применяется к предыдущему слою, пробегая его во всех возможных позициях. Собственно нейроны каждой плоскости и задают своими связями координаты этих позиций. Это приводит к тому, что все нейроны слоя простых клеток следят за тем, не появится ли в их рецептивном поле образ, соответствующий ядру. То есть, если такой образ встретится где-либо во входном для этого слоя сигнале, это будет обнаружено хотя бы одним простым нейроном и вызовет активность соответствующего сложного нейрона. Это ухищрение позволяет найти характерный образ в любом месте, где бы он ни появился. Но надо помнить, что это именно ухищрение и оно не особо соответствует работе реальной коры.

Обучение неокогнитрона происходит без учителя. Оно соответствует описанной ранее процедуре выделения полного набора факторов. Когда на вход неокогнитрона подаются реальные изображения, нейронам не остается ничего другого, кроме как выделять свойственные этим изображениям компоненты. Так, если подавать на вход рукописные цифры, то малые рецептивные поля простых нейронов первого слоя увидят линии, углы и сопряжения. Размеры зон конкуренции определяют, сколько различных факторов может выделиться в каждой пространственной области. В первую очередь выделяются наиболее значимые компоненты. Для рукописных цифр это будут линии под различными углами. Если останутся свободные факторы, то далее могут выделиться и более сложные элементы.

От слоя к слою сохраняется общий принцип обучения – выделяются факторы, характерные для множества входных сигналов. Подавая рукописные цифры на первый слой, на определенном уровне мы получим факторы, соответствующие этим числам. Каждая цифра окажется сочетанием устойчивого набора признаков, что выделится как отдельный фактор. Последний слой неокогнитрона содержит столько нейронов, сколько образов предполагается детектировать. Активность одного из нейронов этого слоя говорит об узнавании соответствующего образа (рисунок ниже)

Распознавание в неокогнитроне (Fukushima K. , Neocognitron, 2007)

Видео ниже позволяет получить наглядное представление о неокогнитроне.


Альтернатива обучению без учителя – это обучение с учителем. Так, в примере с цифрами мы можем не ждать, пока сеть сама выделит статистически устойчивые формы, а говорить ей, что за цифра ей предъявляется, и требовать соответствующего обучения. Наиболее значительных результатов в таком обучении сверточных сетей добился Ян ЛеКун (Y. LeCun and Y. Bengio, 1995). Он показал, как можно использовать метод обратного распространения ошибки для обучения сетей, архитектура которых, как и у неокогнитрона, отдаленно напоминает строение коры мозга.

— 19 —
Страница: 1 ... 1415161718192021222324 ... 95