Жар холодных числ и пафос бесстрастной логики

Страница: 1 ... 6263646566676869707172 ... 142

Как смотреть на это определение? Разумное основание Для данного подхода имеется. Фактически мы хотим определить здесь натуральное число как нечто, присущее всем Равночисленным множествам. Скажем, число два это не есть две утки, два яблока и т. д., а есть то общее, что характеризует все пары предметов. Можно сказать и проще: число два есть и две утки, и два яблока, и т. д.

Но несмотря на всю скрупулезность Фреге, строивши на очерченной логико‑множественной базе арифметику натуральных чисел, его логическая конструкция оказалась формально‑противоречивой. Суть дела состояла в следующем.

Логическая теория Фреге позволяла, грубо говора вводить в рассмотрение предикаты от предикатов (то есть свойства предикатов и отношения между предикатами предикаты от предикатов, определенных на предикатах, а также множества множеств, множества множеств множеств и т. д. При этом никаких ограничений на образована множеств – на задание их с помощью предикатов – не налагалось. Это допускало в теорию такие образования как «свойство, которым оно само не обладает» или «множество, не входящее в самое себя в качестве элемента». Скажем, множество всех абстрактных понятий содержит само себя в качестве элемента, так как предикат «быть абстрактным понятием» есть тоже абстрактное понятие – в отличив например, от множества людей, которое не содержит саж» себя как элемент, поскольку человечество не есть человек. Поэтому, если быть последовательным в проведении логико‑множественного подхода, придется допустить законное» понятия «множества всех множеств, не включающих себя в качестве элемента».

В 1902 году Рассел обнаружил, что в указанном понятии заключено логическое противоречие. Он, видимо, пытался разобраться в возникшей ситуации сам, но сомнения одолевали, и поэтому через год он обратился письменно к Фреге, прося дать разъяснения. Письмо, очевидно, из уважения к Фреге, было написано по‑немецки. Мы приводим полный перевод этого исторического документа, сделанный с английского перевода, выполненного Яном ван Хейеноортом и прочитанного лично Бертраном Расселом, разрешившим его публикацию в книге Хейенсюрта «От Фреге до Гёделя»[85] (эта книга представляет собой сборник классических работ – и фрагментов работ – по математической логике и основаниям математики).

Фрайдис‑хилл, Хейслмир, 16.6.1902

Дорогой коллега, уже полтора года назад я познакомился с Вашими «Основными законами арифметики», но только сейчас я сумел найти время, чтобы изучить Вашу работу тщательно, как я все время намеревался это сделать. Я обнаружил, что согласен с Вами во всем главном, в частности в том, что Вы отвергаете все психологические моменты в логике, и ? Вашей высокой оценке идеографии[86] в основаниях математики, которые сейчас трудно отделить от формальной логики. В связи со многими частными вопросами я нашел в Вашей книге множество рассуждений, тонких исследований и определений, которые тщетно было бы искать в сочинениях других логиков. В вопросах, касающихся функций, я самостоятельно пришел к взглядам, совпадающим с Вашими даже в деталях. Имеется только один пункт, в котором я встретился с трудностью. Вы утверждаете, что функция[87] не нуждается в прямом определении. Я тоже раньше так думал, но сейчас такая точка зрения кажется мне сомнительной из‑за следующего противоречия. Пусть w есть предикат «быть предикатом, который не относится к самому себе». Относится ли этот предикат к самому себе? Из любого ответа на этот вопрос вытекает противоположный ответ. Поэтому мы можем заключить, что w не есть предикат. Точно так же не существует такого множества (рассматриваемого как целое), элементами которого являются множества. не содержащие самих себя. Отсюда я заключаю, что при определенных условиях понятию множества не соответствует ничего такого, что может рассматриваться как объект.

— 67 —
Страница: 1 ... 6263646566676869707172 ... 142