Третья повторяющаяся последовательность, W-С-X-Y-M , может быть объяснена тем, что ключевое слово длиной 5 букв между первой и второй последовательностями повторилось четыре раза. Четвертая повторяющаяся последовательность, E-T-R-L , может быть объяснена тем, что ключевое слово длиной 5 букв между первой и второй последовательностями повторилось двадцать четыре раза. Короче говоря, все указывает на наличие пятибуквенного ключевого слова. Предположим, что длина ключевого слова действительно составляет 5 букв; тогда следующий этап будет заключаться в том, чтобы найти эти буквы. Пока обозначим ключевое слово в виде L1-L2-L3-L4-L5 , где L 1 будет первой буквой ключевого слова, L2 — второй, и так далее. Тогда процесс шифрования начнется с зашифровывания первой буквы открытого текста в соответствии с первой буквой ключевого слова Буква определяет строку квадрата Виженера и, тем самым, задает одноалфавитный шифр замены для первой буквы открытого текста. Однако когда наступает время для зашифровывания второй буквы открытого текста, криптограф должен использовать L2 , чтобы определить другую строку квадрата Виженера, задавая тем самым уже иной одноалфавитный шифр замены. Третья буква открытого текста будет зашифровываться в соответствии с L3 , четвертая — в соответствии с L4 , а пятая — в соответствии с L5 . Каждая буква ключевого слова задает для шифрования свой отличающийся шифралфавит. Но затем шестая буква открытого текста будет опять зашифровываться в соответствии с L1 , седьмая буква — в соответствии с L2 , и далее цикл повторяется. Другими словами, в нашем случае многоалфавитный шифр состоит из пяти одноалфавитных шифров, причем каждый одноалфавитный шифр отвечает за шифрование 1/5 части всего сообщения. Но самое главное состоит в том, что нам уже известно, как проводить криптоанализ одноалфавитных шифров. Таблица 8 Повторяющиеся последовательности и интервалы между ними в шифртексте. Поступим следующим образом. Мы знаем, что одна из строк квадрата Виженера, определяемая буквой задает шифралфавит, которым зашифрованы 1-я, 6-я, 11-я, 16-я… буквы сообщения. Поэтому если возьмем 1-ю, 6-ю, 11-ю, 16-ю… буквы шифртекста, то мы сможем применить добрый, старый частотный анализ для определения данного шифралфавита. На рисунке 14 показано частотное распределение букв, которые стоят на 1-м, 6-м, 11-м, 16-м… местах шифртекста; это буквы W , I , R , E … Здесь следует напомнить, что каждый шифралфавит в квадрате Виженера — это просто обычный алфавит, сдвинутый на 1… 26 позиций. Поэтому частотное распределение на рисунке 14 должно иметь те же особенности, что и частотное распределение стандартного алфавита, за исключением того, что оно будет сдвинуто на некоторое расстояние. Сравнивая распределение L1 со стандартным распределением, можно определить величину сдвига. На рисунке 15 показано стандартное частотное распределение для отрывка английского открытого текста. — 57 —
|