Конфликтующие структуры

Страница: 1 ... 56789101112131415 ... 102

Операторы осознания

Теперь мы введем специальный формализм для фиксации процесса осознания. Для этого мы должны найти формальный способ изображения перехода от выражения (1) к выражению (2), от выражения (2) к выражению (3) и т.д.

Многочлены, которые были введены, существенно отличаются от «обычных» многочленов с вещественными коэффициентами. Поэтому необходимо строго ввести тот .алгебраический объект, с которым мы будем иметь дело в дальнейшем. Исходными для построения формализма (для трех персонажей) являются символы х, у, z, Т и 1. Из этих символов составляются слова — конечные последовательности символов, например, х, ху, Тх, хуz и т.д. - Два слова считаются эквивалентными, если они отличаются только числом вхождения в них символа 1 (например, хху=хху). Таким образом, символ 1 можно вычеркивать из слов.???

Условимся пока рассматривать слова, не содержащие символа Т. Множество всех таких слов счетно. Перенумеруем их некоторым произвольным образом. Получим последовательность ai. Теперь мы можем ввести понятие многочлена.

Многочленом мы будем называть символическую сумму

где ai—элемент булевой алгебры, состоящей из двух элементов 0 и 1.

При заданной нумерации ai многочлен однозначно задается набором коэффициентов ai. Условимся в дальнейшем выписывать лишь те члены, коэффициенты перед которыми равны 1. Необходимо обратить внимание на отличие многочлена от отдельного слова. Если мы пишем, например, со==1, то это значит, что рассматривается многочлен:

00

1+ ?(0ai) в котором только перед ai=l

i= 2

коэффициент отличен от нуля.

Теперь можно ввести операции сложения и умножения многочленов. Они вводятся так же, как и операции над «обычными» многочленами, с той лишь существенной разницей, что умножение оказывается некоммутативным. Нетрудно видеть, что умножение ассоциативно и выполняются правый и левый законы дистрибутивности:

w1(w2+w3)=w1w2+w1w3

w2+w3)w1=w1w2+w3w1

Каждому многочлену сопоставим в соответствие специфический многочлен Q=Tw. Многочлены и, как мы показали раньше, позволяют изображать состояния рефлексирующих систем, а многочлены w будут интерпретированы как операторы осознания.

— 10 —
Страница: 1 ... 56789101112131415 ... 102