Против Богов. Укрощение риска

Страница: 1 ... 8081828384858687888990 ... 291

В своей статье Бернулли приводит ряд интересных примеров, иллюстрирующих его идеи. Самым интригующим и знаменитым из них стал так называемый петербургский парадокс, предложенный его «глубоко почитаемым кузеном, славным Николаем Бернул­ли» — медлительным издателем «Ars Conjectandi». Николай пред­ложил игру между Петром и Павлом, в которой Петр бросает мо­нету до тех пор, пока не выпадет орел. Петр должен заплатить Павлу один дукат, если орел выпадет в первом броске, два дуката, если орел выпадет во втором броске, четыре — в третьем броске, и так далее. С каждым следующим броском число дукатов, которые Петр должен заплатить Павлу, удваивается4).

Ричард Силла и Леора Клаппер помогли мне составить представление о ценности дуката в начале XVIII века. В это время дукат был эквивалентен приблизительно 40 современным долларам. Уильям и Хильда Бомол подтверждают эту оценку [Baumol W.t Baumol H., 1994, Appendix]. См. также: [McKuster, 1978; Warren, Pearson, 1993].

Сколько должен заплатить Павлу за право занять его место в этой игре тот, кто захо­чет загрести порядочную сумму?

Причину парадокса Бернулли усматривает в том, что «приня­тый метод вычисления [ожидаемого значения] на деле делает оценку перспектив Павла бесконечно большой, [но] никто не захочет купить [эти перспективы] за достаточно высокую цену... Каждый сколь­ко-нибудь разумный человек с большим удовольствием продаст свой шанс за двадцать дукатов» 5>.

Бернулли провел подробный математический анализ проблемы, основанный на предположении, что польза от приращения богатства обратно пропорциональна первоначальному богатству. В соответст­вии с этим предположением сумма, которую Павел может выиграть на двухсотом броске, принесет ему бесконечно малую добавочную пользу по сравнению с тем, что он должен был накопить к сто пер­вому броску; даже к пятьдесят первому броску у него уже должно быть более 1 000 000 000 000 000 дукатов. (Для сравнения отметим, что национальный долг правительства США составляет ныне в дол­ларах сумму, представляемую четверкой с двенадцатью нулями.)

В дукатах или в долларах, оценка ожиданий Павла долгое вре­мя привлекала внимание ведущих математиков, философов и эко­номистов. В истории математики англичанина Исаака Тодхантера, опубликованной в 1865 году, содержатся многочисленные ссылки на петербургский парадокс и обсуждаются некоторые решения, предложенные математиками за годы, прошедшие после опублико­вания статьи Бернулли12. Между тем многие годы статью Бернулли можно было прочесть только в оригинале на латыни, пока в 1896 го­ду не появился первый немецкий перевод. Внимание математиков к петербургскому парадоксу резко возросло после того, как Джон Мейнард Кейнс сослался на него в своем «Курсе теории вероятно­сти» («A Treatise of Probability»), опубликованном в 1921 году. Но только в 1954 году — через 216 лет после первой публикации — статья Бернулли появилась в английском переводе.

— 85 —
Страница: 1 ... 8081828384858687888990 ... 291