Против Богов. Укрощение риска

Страница: 1 ... 7879808182838485868788 ... 291

У монеты две стороны, орел и решка, каждая может выпасть с вероятностью 50%, поскольку не могут обе стороны одновременно смотреть вверх. Каков ожидаемый результат бросания монеты? Мы умножаем 50% на один для орла, делаем то же самое для решки, берем сумму — 100% — и делим на два. Ожидаемое значение при бросании монеты равно 50%. Орел и решка выпадают с одинако­вой вероятностью.

Каково ожидаемое значение при бросании двух костей? Если мы сложим 11 возможных чисел — 2+3+4+5+6+7+8+9+ + 10 + 11 + 12, то в сумме получим 77. Ожидаемое значение от бросания двух костей равно 77/ц, или ровно 7.

Однако эти 11 чисел выпадают не с одинаковой вероятностью. Как показал Кардано, некоторые числа должны появляться чаще других, потому что при бросании двух костей возможны 36 разных комбинаций двух чисел, которые в сумме дают 11 возможных зна­чений от 2 до 12; например, два получается только при варианте дубль-один, а четыре — в результате трех исходов, а именно: 3 + 1, 1 + Зи2 + 2. Полезная таблица Кардано (с. 70) показывает число комбинаций, дающих каждый из 11 исходов:

Исход

Вероятность

Взвешенная вероятность

2

V86

2 х

Vae

= 0,06

3

2/36

Зх

2/36

= 0,17

4

3/36

4 х

3/36

= 0,33

5

4/36

5 х

4/36

= 0,56

6

5/36

5/36

= 0,83

7

6/36

7 х

6/36

= 1Д7

8

5/36

5/36

= 1Д1

9

4/36

9 х

4/36

= 1,00

10

3/36

10 X

3/36

= 0,83

11

2/36

11 X

2/36

= 0,61

12

Vse

12 х

Vse

= 0,33

Итого = 7,00

Ожидаемое значение, или математическое ожидание, при броса­нии двух костей равно 7, что соответствует результату нашего пре­дыдущего подсчета 77/ц. Теперь ясно, почему семерка играет та­кую важную роль в игре в крепе.

Бернулли согласен, что такие расчеты хороши для случайных игр, но настаивает на том, что в повседневной жизни дело обстоит иначе. Даже если вероятности известны (упрощение, впоследствии отвергнутое математиками), разумный человек, принимая реше­ние, постарается максимизировать скорее ожидаемую полезность (или степень удовлетворения), чем ожидаемое значение. Ожидае­мая полезность вычисляется с использованием тех же методов, что и ожидаемое значение, но оценивается с учетом весомости фактора полезности11.

Например, Антуан Арно, почтенный автор «Логики» Пор-Рояля, обвинял людей, боящихся раскатов грома, в переоценке того, на­сколько мала вероятность попадания в них молнии. Он был не прав. Не они, а он кое-что игнорирует. Факты одни и те же для всех, и да­же тот, кто приходит в ужас от первого раската грома, прекрасно осознаёт, насколько мала вероятность попадания молнии именно в то место, где он находится. Ситуацию прояснил Бернулли: люди, боящиеся попадания в них молнии, придают такой вес последстви­ям этого исхода, что, сколь бы мала ни была его вероятность, само ее наличие способно ужаснуть.

— 83 —
Страница: 1 ... 7879808182838485868788 ... 291