Паутина жизни

Страница: 1 ... 8283848586878889909192 ... 224

Еще одно важное свойство нелинейных уравнений, которое всегда смущало ученых, заключается в том, что точное предсказание часто бывает неосуществимо, даже если уравнения строго детерминированы. Эта поразительная особенность нелинейности обусловила важный сдвиг акцента от количественного анализа к качественному.

Обратная связь и итерации

Третье важное свойство нелинейных систем вытекает из частого возникновения в них процессов с усиливающей обратной связью. В линейных системах малые изменения производят малые эффекты, а значительные эффекты являются следствием либо больших изменений, либо суммы множества мелких изменений. В нелинейных системах, напротив, мелкие изменения могут вызвать драматический эффект, если они многократно усиливаются через обратную связь. Такие нелинейные процессы с обратной связью лежат в основе неустойчивости и внезапного появления новых форм порядка, столь характерных для самоорганизации.

Математически петля обратной связи соответствует особому типу нелинейного процесса, известному как итерация (латинское «повторение»); в этом процессе функция многократно применяется к себе самой. Например, если функция состоит в умножении переменной на 3, т. е. f(x) = Зх, то итерация заключается в многократном умножении. В математике это записывается так:

х ? Зх

Зх ? 9х

9х ? 27х

и т. д.

Каждый из этих шагов называется отображением. Если мы представим себе переменную х в виде числовой оси, то операция х — > Зх отображает каждое число на другое число на этой же оси. В более общем случае отображение, состоящее в умножении х на постоянное число /с, записывается в виде:

х ? kх .

Часто встречаемой в нелинейных системах итерацией, очень простой и в то же время производящей огромную сложность, является отображение:

х ? kх(1 - х),

где переменная х ограничена значениями от 0 до 1. Это отображение, известное математикам как логистическое, имеет много важных приложений. Его, например, используют экологи для описания роста населения при противоположных тенденциях, и поэтому оно также известно как уравнение роста8.

Исследование итераций разнообразных логистических отображений представляет собой увлекательное упражнение, которое можно легко осуществить с помощью карманного калькулятора9. Чтобы понять существенную особенность этих итераций, снова выберем значение k=3:

х ? Зх(1 - х).

Переменную х можно представить в виде участка оси от 0 до 1, тогда очень просто вычислить отображения для нескольких точек, например

  1. ? 0(1 - 0) =0
    0.2 ? 0.6 (1 - 0.2) = 0.48
    0.4 ? 1.2 (1 - 0.4) = 0.72
    0.6 ? 1.8 (1-0.6) = 0.72
    0.8 ? 2.4 (1 - 0.8) = 0.48
  2. ? 3(1-1) =0.

Отметив эти числа на двух участках оси, можно увидеть, что величины от 0 до 0,5 отображаются числами от 0 до 0,75. Таким образом, 0,2 превращается в 0,48, а 0,4 становится 0,72. Числа от 0,5 до 1 отображаются на том же участке, но в обратном порядке. Так, 0,6 превращается в 0,72, а 0,8 становится 0,48. Общий эффект показан на рис. 6-6. Отображение растягивает отрезок от 0 до 1,5, а затем снова сворачивает его так, что значения пробегают от 0 до 0,75 и обратно.

— 87 —
Страница: 1 ... 8283848586878889909192 ... 224