Различные циклы состояний в двоичной сети могут значительно различаться по длине. В некоторых сетях они бывают исключительно длинными, и длина эта возрастает по экспоненте с ростом числа переключателей. Кауффман определил аттракторы этих исключительно длинных циклов, насчитывающих миллиарды и миллиарды различных состояний, как «хаотические», поскольку их длина практически бесконечна. Тщательный анализ аттракторов больших двоичных сетей подтвердил то, что кибернетики обнаружили еще в 40-е годы. Некоторые сети хаотичны, поскольку генерируют кажущиеся случайными последовательности и бесконечно длинные аттракторы; другие же генерируют совсем простые аттракторы, соответствующие паттернам высокого порядка. Таким образом, изучение двоичных сетей дает еще одно представление о феномене самоорганизации. Сети, координирующие совместную деятельность тысяч элементов, могут проявлять высокоупорядоченную динамику. У границы хаоса Чтобы установить точную взаимосвязь между порядком и хаосом в этих моделях, Кауффман проверил множество сложных двоичных сетей и разнообразных правил переключения, включая сети, в которых число «входов», или звеньев, различно для разных переключателей. Он обнаружил, что поведение этих сложных паутин можно подытожить, учитывая два параметра: N — число переключателей в сети; К — среднее число входов на каждом переключателе. Для значений К больше 2, то есть в случае множественных взаимосвязей в сети, поведение последней хаотично, но по мере того, как К уменьшается и приближается к 2, устанавливается порядок. Порядок может возникнуть и при более высоких значениях К, если правила переключения «смещены» — например, если ВКЛ преобладает над ВЫКЛ. Подробные исследования перехода от хаоса к порядку показали, что по мере того, как К приближается к 2, двоичные цепи развивают «замороженное ядро» элементов. Это те звенья, которые остаются в одной и той же позиции, ВКЛ или ВЫКЛ, пока система проходит весь цикл состояний. При еще большем приближении К к 2, замороженное ядро создает «стены постоянства», которые вырастают по всей системе, разделяя сеть на отдельные островки меняющихся элементов. Эти островки функционально изолированы. Изменения в поведении одного острова не могут быть переданы сквозь замороженное ядро на другие острова. Если значение К продолжает падать, острова тоже замерзают; периодический аттрактор превращается в точечный, и вся сеть достигает устойчивого, замороженного паттерна. Таким образом, сложным двоичным цепям свойственны три общих режима поведения: упорядоченный режим с замороженными компонентами, хаотический режим без замороженных компонентов и пограничный режим между порядком и хаосом, где замороженные компоненты лишь начинают «таять». Центральная гипотеза Кауффмана заключается в том, что живые системы существуют в этой пограничной области, у края хаоса. Он поясняет, что глубоко в упорядоченном режиме островки деятельности были бы слишком маленькими и изолированными, чтобы сложное поведение могло распространяться по всей системе. Глубоко в хаотическом режиме, с другой стороны, система была бы слишком чувствительна к мельчайшим возмущениям, чтобы поддерживать свою организацию. Таким образом, роль естественного отбора может заключаться в том, чтобы поддерживать живые системы, организованные «на краю хаоса», — потому что здесь они лучше координируют сложное и гибкое поведение, лучше приспосабливаются и развиваются. — 137 —
|