Паутина жизни

Страница: 1 ... 128129130131132133134135136137138 ... 224

Клеточные автоматы использовались профессиональными математиками и любителями не только для изобретения многочисленных игр; не менее пристально их изучали как математический инструмент для научных моделей. В силу их сетевой структуры и способности работать с большими количествами дискретных переменных, эти математические формы были вскоре признаны и приняты в качестве замечательной альтернативы дифференциальным уравнениям в области имитации сложных систем9. В некотором смысле эти два подхода — дифференциальные уравнения и клеточные автоматы — можно рассматривать как различные математические структуры, соответствующие двум отдельным концептуальным измерениям в теории живых систем — структуре и паттерну.

Имитация автопоэзных сетей

В начале 70-х Франциско Варела понял, что пошаговые последовательности клеточных автоматов идеальны для компьютерного моделирования и обеспечивают его мощным инструментом имитации автопоэзных сетей. И в 1974 году, совместно с Матураной и ученым-компьютерщиком Рикардо Урибе, Вареле удалось разработать требуемый компьютерный имитатор10. Их клеточный автомат состоит из решетки, в плоскости которой беспорядочно передвигаются «катализатор» и два типа элементов. Они взаимодействуют друг с другом таким образом, что в результате могут образоваться новые элементы обоих видов; одни могут исчезать, а другие связываются друг с другом, образуя цепи.

В компьютерных распечатках решетки «катализатор» помечается звездочкой (*). Элемент первого типа, присутствующий в больших количествах, называется «субстратом» и помечается кружком (о); элемент второго типа называется «звеном» и помечается кружком внутри квадрата ([0]). Существует три различных типа взаимодействий и преобразований: два субстрата могуn объединиться в присутствии катализатора, образуя звено; несколько звеньев могут «сцепиться», образуя цепь; любое звено, как свободное, так и входящее в цепь, может распасться снова на два субстрата. В результате некоторого количества преобразований цепь может замкнуться сама на себя.

Эти три типа взаимодействия символически изображаются так:

Точные математические предписания (так называемые «алгоритмы»), касающиеся того, когда и как происходят эти процессы, достаточно сложны. Они состоят из многочисленных правил передвижения различных элементов и их взаимодействий". Правила передвижения, например, включают следующие пункты:

  • Субстратам разрешено перемещаться только в незанятые участки
    («дырки») решетки; в то же время катализаторам и звеньям разрешено вытеснять субстраты, перемещая их в соседние дырки. Катализатор, кроме того, может вытеснять свободные звенья.
  • Катализатор и звенья могут также меняться местами с субстратами и, таким образом, свободно проходить сквозь их массивы.
  • Субстраты — но не катализатор и не свободные звенья — могут пройти сквозь цепь и занять дырку, расположенную за ней (это имитирует полупроницаемые мембраны клеток).
  • Звенья, связанные в цепь, не могут передвигаться никак.

В рамках этих правил фактическое движение элементов и многочисленные подробности их взаимодействия — создание, сцепление и распад — выбираются случайным образом12. Когда запущена имитация на компьютере, генерируется сеть взаимодействий, включающая множество ситуаций случайного выбора, а следовательно, порождающая в свою очередь самые различные последовательности. Авторам удалось показать, что некоторые из этих последовательностей приводят к устойчивым автопоэзным паттернам.

— 133 —
Страница: 1 ... 128129130131132133134135136137138 ... 224