Рассуждая таким образом, Эйнштейн сумел вычислить энергию квантов света. Он показал, что их энергия зависит от частоты падающего света точно так, как предсказывала гипотеза Планка. Для Эйнштейна это было ясным свидетельством реальности существования квантов. Его интерпретация давала очень точную картину световых квантов: один квант испытывал соударение с одним электроном, который по этой причине испускался. Именно это открытие, а не теория относительности, принесло Эйнштейну Нобелевскую премию по физике 1921 года. Поразительно, однако, что хотя Эйнштейн признавал существование квантованных порций света, он с большой неохотой соглашался с тем, что эти кванты на самом деле были безмассовыми частицами, переносившими энергию и импульс, но не имевшими массы. Первое убедительное свидетельство корпускулярной природы квантов света было получено в 1923 году при наблюдении эффекта Комптона, в котором в результате соударения кванта света с электроном происходило изменение направления движения этого кванта (рис. 41). В общем случае можно определить энергию и импульс частицы, измерив ее угол отклонения после соударения. Если фотоны — безмассовые частицы, то они должны совершенно определенным образом вести себя после соударения с другими частицами, например электронами. Измерения показали, что кванты света ведут себя в точности так, как если бы они были безмассовыми частицами, взаимодействующими с электронами. Неизбежным был вывод: кванты света действительно являются частицами. Сейчас мы называем их фотонами. Интересно, что Эйнштейн так сопротивлялся признанию квантовой теории, которую он же и помогал создать. Однако его реакция не более удивительна, чем недоверчивая реакция Планка на гипотезу Эйнштейна о квантовании. Планк и ряд других ученых хвалили многие достижения Эйнштейна, но умеряли свой энтузиазм[59]. Планк даже заметил несколько пренебрежительно: «Не следует ставить ему в упрек то, что он иногда промахивался в своих рассуждениях, например, в гипотезе о световых квантах, так как невозможно предложить действительно новые идеи даже в самых точных науках, если не пойти на некоторый риск»[60]. Но не заблуждайтесь. Предложенные Эйнштейном световые кванты были точным попаданием в цель. Замечание Планка всего лишь отражает революционную природу мышления Эйнштейна и изначальное сопротивление ученого сообщества принятию его идей. Квантование и атомИстория квантования и старая квантовая теория не закончились на изучении света. Оказалось, что вся материя состоит из фундаментальных квантов. Следующим ученым, внесшим вклад в гипотезу квантования, был Нильс Бор. Он применил эту гипотезу к хорошо известной частице — электрону. — 97 —
|