Де Бройль предположил, что частица с импульсом р связана с волной, длина которой обратно пропорциональна импульсу, т. е. чем меньше импульс, тем больше длина волны. Кроме того, длина волны пропорциональна постоянной Планка h [64]. Идея, лежавшая в основе гипотезы де Бройля, состояла в том, что бурно колеблющаяся волна (длина волны которой мала) переносит больший импульс, чем волна, колеблющаяся как в летаргическом сне (с большой длиной волны). Меньшим длинам волн соответствуют более быстрые осцилляции, которые де Бройль сопоставил с большими импульсами. Если вы ошарашены существованием такой частицы-волны, именно так и должно быть. Когда де Бройль впервые ввел понятие о своих волнах, никто не знал, что это такое. Макс Борн предложил удивительную интерпретацию: волна есть функция координаты, и квадрат этой функции определяет вероятность обнаружения частицы в каком-то месте пространства[65]. Борн назвал эту функцию волновой функцией. Идея Макса Борна заключалась в том, что невозможно зафиксировать положение частиц, и его можно описывать только с помощью вероятностей. Это огромный шаг в сторону от классических представлений. Это означает, что вы не можете знать точное местоположение частицы. Вы можете только определить вероятность ее обнаружения в каком-то месте. Однако несмотря на то, что квантово-механическая волна описывает только вероятности, сама квантовая механика предсказывает точную эволюцию этой волны во времени. Задавая значения волны в любой данный момент времени, можно определить ее значения в любой последующий момент. Шрёдингер написал волновое уравнение, описывающее эволюцию волны, связанной с квантовомеханической частицей. Но что означает эта вероятность обнаружения частицы? Идея представляется загадочной — в конце концов, такого понятия, как доля частицы, не существует. Утверждение, что частицу можно описывать волной, было (и в определенном смысле остается) одним из самых удивительных свойств квантовой механики, в частности, потому что известно, что частицы часто ведут себя как бильярдные шары, а не как волны. Интерпретации на языке частиц и волн кажутся несовместимыми. Разрешение кажущегося парадокса тесно связано с тем, что с помощью только одной частицы вы никогда не установите ее волновую природу. Когда вы детектируете отдельный электрон, вы видите его в некотором определенном месте. Чтобы отобразить всю волну, вам требуется либо множество тождественных электронов, либо многократное повторение одного и того же эксперимента. Даже несмотря на то что каждый электрон связан с волной, с помощью одного электрона можно измерить только одно число. Но если вы могли бы подготовить большую совокупность тождественных электронов, вы обнаружили бы, что доля электронов в каждом месте пропорциональна вероятности, которую приписывает электрону квантовая механика. — 102 —
|