Эйнштейн не был одинок в своем отрицании неевклидовой геометрии. Его друг, шведский математик Марсель Гроссман также считал ее чрезмерно сложной и пытался отговорить Эйнштейна от ее использования. Однако они в конце концов согласились, что единственный поддающийся анализу способ объяснения гравитации должен заключаться в использовании неевклидовой геометрии для описания пространственно-временной структуры. Только после этого Эйнштейн сумел интерпретировать и рассчитать эквивалентное гравитации искривление пространства-времени, что оказалось ключом к завершению общей теории относительности. После того как Гроссман признал поражение, он вместе с Эйнштейном вступил в борьбу с тонкостями дифференциальной геометрии, для того чтобы упростить очень сложные ранние формулировки теории тяготения. В конце концов они завершили общую теорию относительности и достигли более глубокого понимания самой гравитации. Общая теория относительности ЭйнштейнаОбщая теория относительности представляет собой радикальный пересмотр понятия гравитации. Сейчас мы понимаем гравитацию — силу, которая удерживает ваши ноги на земле и связывает воедино нашу Галактику со Вселенной, — не как силу, непосредственно действующую на тела, а как следствие геометрии пространства-времени. Эта идея довела взгляды Эйнштейна на единство пространства и времени до своего логического завершения. Общая теория относительности использует глубокую связь между инертной и гравитационной массами, чтобы сформулировать эффекты гравитации только в терминах геометрии пространства-времени. Любое распределение вещества или энергии искривляет или закручивает пространство-время. Изогнутые траектории в пространстве-времени определяют движение под действием гравитации, а наличие вещества и энергии во Вселенной заставляет само пространство-время расширяться, волнообразно изгибаться или сжиматься. Наикратчайшее расстояние между двумя точками называется геодезической. В плоском пространстве геодезическая представляет собой прямую линию. В искривленном пространстве мы можем определить геодезическую как кратчайший путь между двумя точками, но этот путь уже не обязательно будет прямой линией. Например, маршруты самолетов, летящих по окружностям большого круга на Земле, являются геодезическими. (Окружность большого круга есть любая окружность, представляющая собой границу сечения шара плоскостью, проходящей через его центр, например, линия экватора или линия долготы.) Хотя эти траектории не являются прямыми, они есть кратчайшие пути между двумя точками из тех, которые не проходят сквозь поверхность Земли. — 84 —
|