Закрученные пассажи

Страница: 1 ... 7677787980818283848586 ... 374

Эта решающая идея привела Эйнштейна к полной переформулировке теории тяготения. Он уже более не рассматривал гравитацию как силу, действующую непосредственно на тело. Вместо этого он описал ее как искажение геометрии пространства-времени, отражающее различные ускорения, необходимые для того, чтобы свести на нет гравитацию в разных местах. Пространство-время является уже не фоном события, а его активным участником. Благодаря общей теории относительности Эйнштейна сила тяготения понимается на языке кривизны пространства-времени, которая, в свою очередь, определяется имеющейся в наличии материей и энергией. Рассмотрим понятие кривизны пространства-времени, на котором основана революционная теория Эйнштейна.

Искривленное пространство и искривленное пространство-время

Математическая теория должна быть внутренне самосогласованной, но, в отличие от научной теории, она не обязана соответствовать внешней физической реальности. Действительно, математики часто черпают вдохновение из того, что они видят в окружающем мире. Такие математические объекты, как кубы или натуральные числа, имеют свои аналоги в реальном мире. Однако математики расширяют предположения об этих знакомых понятиях на объекты, чья физическая реальность менее очевидна, например, на тессеракты (гиперкубы в четырехмерном пространстве) и кватернионы (экзотическая система чисел).

В третьем веке до н. э. Евклид сформулировал пять основных постулатов геометрии. Из этих предположений развилась красивая логическая структура, с которой вы, возможно, соприкоснулись в старших классах школы. Однако позднее математики стали проявлять беспокойство в отношении пятого постулата, известного как постулат о параллельных. Этот постулат утверждает, что если заданы прямая и точка вне этой прямой, то существует одна и только одна прямая, которую можно провести через заданную точку параллельно заданной прямой.

В течение двух тысячелетий после того, как Евклид сформулировал свои постулаты, математики спорили о том, является ли пятый постулат действительно независимым, или он может быть логическим следствием остальных четырех. Может ли существовать система геометрии, в которой были бы верны все постулаты, кроме последнего? Если такой системы геометрии не существует, пятый постулат не может быть независимым, и должен поэтому выводиться.

Только в девятнадцатом веке математики поставили пятый постулат на должное место. Великий немецкий математик Карл Фридрих Гаусс обнаружил, что пятый постулат Евклида был тем самым, что утверждал Евклид, — постулатом, который мог быть заменен другим. Гаусс продвинулся вперед и сделал эту замену, открыв другие системы геометрии и демонстрируя таким образом, что пятый постулат независим. Так родилась неевклидова геометрия.

— 81 —
Страница: 1 ... 7677787980818283848586 ... 374