Закрученные пассажи

Страница: 1 ... 140141142143144145146147148149150 ... 374

В разговорной речи люди часто отождествляют симметрию с красотой. Действительно, определенное восхищение симметрией возникает из регулярности и аккуратности, которые она обеспечивает. Симметрия также помогает процессу обучения, так как повтор в пространстве или во времени создает в нашей голове прочные образы. Запрограммированный отклик мозга на симметрию и ее явная эстетическая привлекательность во многом являются причиной того, что мы окружаем себя симметрией.

Однако симметрии возникают не только в живописи и архитектуре, но и в природе, причем без всякого вмешательства человека. Поэтому вы так часто сталкиваетесь с симметриями в физике. Цель физики — связать друг с другом различные величины так, чтобы на основе наблюдений можно было делать предсказания. В этом смысле симметрия является естественным участником игры. Если физическая система обладает симметрией, вы можете описать систему на основе меньшего числа наблюдений, чем если бы у системы не было симметрии. Например, если имеются два тела с одинаковыми свойствами, я буду знать физические законы, управляющие поведением одного из тел, если я уже исследовала поведение другого. Так как два тела эквивалентны, я знаю, что они должны вести себя одинаково.

В физике существование преобразования симметрии в системе означает, что существует определенная процедура перегруппировки системы, оставляющая неизменными все ее измеримые физические свойства[112]. Например, если система обладает вращательной и трансляционной симметриями, двумя хорошо известными примерами симметрий пространства, то физические законы выглядят одинаково во всех направлениях и во всех местах. Вращательная и трансляционная симметрии говорят, например, что не имеет значения, в какую сторону вы смотрите или где вы находитесь в момент, когда вы ударяете бейсбольной битой по мячу, — если во всех случаях приложенная сила одинакова, мяч будет вести себя одинаково. Любой эксперимент будет приводить к одному и тому же результату, если вы повернете свою установку или повторите измерение в другой комнате или другом месте.

Трудно переоценить важность симметрии в физических законах. Многие физические теории, такие как законы электродинамики Максвелла или теория относительности Эйнштейна, глубоко уходят корнями в симметрию. Используя различные симметрии, мы можем обычно упростить задачу использования теорий для получения физических предсказаний. Например, предсказание орбитального движения планет, гравитационное поле Вселенной (оно более или менее симметрично относительно вращений), поведение частиц в электромагнитных полях и много других физических явлений становятся математически проще, если принять во внимание симметрию.

— 145 —
Страница: 1 ... 140141142143144145146147148149150 ... 374