Рисунок 1: Паттерны сжатия(а) олово; (b) кремний; (с) хлорид калия; (d) сурьма Кроме изменений такого типа, обычно называемых переходом второго порядка, некоторые твердые вещества подвергаются переходам первого порядка, когда в точке перехода происходит модификация кристаллической структуры и прерывности объема. В период перехода такого вида обычно меняется действующее внутреннее давление и результирующий паттерн объема похож на паттерн KCl, Рис. 1(с). За исключением некоторых величин, ошибочных и сомнительной надежности, все результаты Бриджмена следуют одному из трех паттернов или их комбинации. Паттерн сурьмы, Рис. 1(d), демонстрирует один из комбинированных паттернов. Здесь за переходом второго порядка между 30.000 и 40.000 кг/см2 следует переход первого порядка при высоком давлении. Числовые величины, соответствующие этим кривым, приводятся в нижеприведенных таблицах. Экспериментальные кривые второго порядка плавные и правильные, указывая на то, что при достижении надлежащего давления, процесс перехода происходит свободно. Напротив, переходы первого порядка демонстрируют значительную неправильность, и экспериментальные результаты позволяют предположить, что у многих веществ структурные изменения в точках перехода подвергаются переменному количеству задержки за счет внутренних условий в твердой совокупности. У таких веществ переход совершается не при определенном давлении, а где-то в пределах относительно широкой зоны перехода, и между измерениями, точный процесс перехода может значительно меняться. Кроме того, имеется много веществ, подвергающихся подобным задержкам в достижении объемного равновесия даже без перехода. Кривые сжатия позволяют предположить, что ряд зафиксированных переходов на самом деле является подгонками объема, отражающими задержку реакции на приложенное ранее давление. Например, на кривой бария, основанной на результатах Бриджмена, имеются два перехода, один между 20.000 и 25.000 кг/см2, и другой между 60.000 и 70.000 кг/см2. И все же, экспериментальные объемы при 60.000 и 100.000 кг/см2 очень близки к величинам, вычисленным на основе отношения прямой линии. Поэтому весьма вероятно, что этот элемент действительно следует одному линейному отношению, по крайней мере, поблизости от 100.000 кг/см2. Отклонения от теоретических кривых, обнаруженные в экспериментальных объемах веществ с относительно высокими точками плавления, обычно пребывают в пределах ошибки эксперимента, и в большинстве случаев большие отклонения можно объяснить на вышеизложенной основе. Кривые сжатия для веществ с низкими точками плавления демонстрируют систематические отклонения от линейности при низких давлениях, но это нормальный паттерн поведения, возникающий в результате близости изменения состояния. Как будет детально изложено в исследовании жидкого состояния, физическое состояние материи – это, в основном, свойство индивидуального атома или молекулы. Состояние совокупности отражает состояние большинства ее индивидуальных составляющих. Соответственно, твердая совокупность при любой температуре ближе к точке плавления содержит конкретную пропорцию жидких молекул. Поскольку объем жидких молекул отличается от объема твердых молекул, соответственно меняется объем совокупности. Величина отклонения объема в любом случае может быть вычислена посредством методов, которые будут описаны в последующем обсуждении в связи с объемом жидкости. — 48 —
|