Способность проводящего провода принимать дополнительные электроды, подвергаясь действию напряжения, делает его контейнером, в котором при необходимости могут аккумулироваться и из которого могут извлекаться незаряженные электроны (единицы электрического тока). В электрической практике такое аккумулирование имеет ряд применений, но оно очень неудобно для общего использования. Более эффективное аккумулирование возможно с помощью прибора, содержащего необходимые компоненты в более компактной форме. В этом приборе, конденсаторе, имеются две пластины, каждая площадью s2, они находятся на расстоянии s’ друг от друга. Каждая пластина эквивалентна проводникам с площадью поперечного сечения s2. Таким образом, аккумулирующая мощность конденсатора при данном напряжении прямо пропорциональна площади пластины и обратно пропорциональна расстоянию между пластинами. Аккумулирующая мощность называется емкостью, символ С. Поскольку она обладает измерениями пространства (s2/s’ = s), ее можно вычислить непосредственно из геометрических измерений проводника. В качестве единицы измерения использовался сантиметр, хотя в современной практике используется специальная единица – фарад. Если конденсатор соединен с источником тока, действующее напряжение, сила (t/s2), вталкивает незаряженные электроны, составляющие электрический ток, в конденсатор до тех пор, пока не достигается концентрация, соответствующая напряжению. Пространственно-временные размерности результата - t/s2 x s = t/s. Это обратная скорость или энергия. На основании определения заряда, данного в этой работе, это не заряд, но поскольку электрический заряд обладает размерностями энергии, t/s, аккумулированное количество эквивалентно заряду. Чтобы свести к минимуму отклонения от ныне принятой терминологии, мы будем называть его зарядом конденсатора. Величина аккумулирования может выражаться уравнением Q = CV, где Q – это заряд конденсатора, а V – разность потенциалов между пластинами конденсатора. Единица емкости, фарад, определяется как кулон на вольт. Вольт – это 1 джоуль на кулон. Это единицы системы СИ, которые будут использоваться в последующем обсуждении электричества и магнетизма больше, чем единицы системы измерений сгс, которыми мы пользовались в этих томах. Причина - в значительном прояснении физических связей в данной сфере, достигнутых за последние годы, и большая часть литературы, связанная с этими темами, пользуется системой СИ. К сожалению, прояснение электрических и магнитных ситуаций не распространилось на самые фундаментальные проблемы, включая многие, введенные в электрическую теорию неспособностью осознать существование незаряженных электронов и соответствующей неспособностью осознавать разницу между количеством электричества и электрическим зарядом. Как мы видели в главе 9, единица количества электричества – это единица пространства (s). Мы нашли, что единица электрического заряда – это единица энергии (t/s). В нынешней практике обе величины выражаются одной и той же единицей измерения, электростатической единицей в системе сгс или кулонами в системе СИ. Поскольку в обсуждение введен электрический заряд, мы будем проводить различие, которое не осознает нынешняя теория, и вместо того, чтобы иметь дело с кулонами, будем разграничивать кулоны s и кулоны t/s. В данной работе символ Q, который использовался для обеих величин, отныне будет относиться лишь к электрическому заряду или заряду конденсатора, измеренному в кулонах t/s. Количество электричества, измеренное в кулонах (s), будет представлено символом q. — 169 —
|