Структура физической вселенной. Том 2

Страница: 1 ... 96979899100101102103104105106 ... 308

Это значит, что при T1 молекула подвергается изотермическому расширению до уровня второго сегмента при этой температуре. У совокупности индивидуальные молекулярные расширения распространяются в области температуры посредством распределения молекулярных скоростей, на кривой расширения они выглядят как вздутие. Поэтому кривая отклоняется вниз, подобно отклонению у кривых экспериментальной удельной теплоты за счет эффекта перехода к почти горизонтальному второму сегменту кривой. Общий эффект двух видов отклонений от теоретической кривой в применении к единичной молекуле зависит от их относительной величины и от температурной области, в которой распределяются отклонения. Кривые на рисунке 14 выбраны из тех, у которых итоговое отклонение сводится к минимуму, чтобы свести к минимуму неопределенности в определении верхних сегментов кривых, и прояснить, что эти линейные сегменты реально устраняются на вычисленных начальных уровнях. Выпуклость очевидна на кривых для золота и свинца, показанных на рисунке 15.

Если эффект систематического отклонения от линейного отношения вблизи точки перехода принимается во внимание, все электроположительные элементы, включенные в подборку данных расширения, используемых в исследовании[12], за исключением редко земельных элементов, имеют кривые расширения, следующие теоретическому паттерну в пределах точности экспериментальных результатов. Большинство редко земельных элементов обладают коэффициентом одной единицы расширения (5.2 x 10-6) на начальном уровне второго сегмента кривой, хотя их точки плавления пребывают в области, где были бы обычными коэффициенты двух или в некоторых случаях трех единиц. Причина отклонения от общего паттерна у кривых расширения этих элементов еще не известна, но, несомненно, связана с другими особенностями редко земельных элементов, отмеченными раньше.

Электроотрицательные элементы Деления III следуют обычному паттерну. Самая низкая точка плавления в этой группе – точка плавления меркурия - 234?К, намного ниже самой низкой величины у любых исследуемых электроотрицательных элементов, но уменьшение до более низкой точки плавления не приводит ни к какому новому поведению. Верхний сегмент кривой расширения для меркурия, определенный эмпирическими данными на рисунке 15, определенно устраняет уровень четырех единиц (20.7 x 10-6), что требуется теорией. Поэтому теоретические отношения применимы во всей области температур первых трех делений.

Как отмечалось раньше, пограничные элементы Деления IV, обладающие отрицательным смещением 4, могут выступать как члены либо Деления III, либо деления IV. Кривая расширения для свинца (рисунок 14) следует обычному паттерну Деления III. Более низкие пограничные элементы, олово и германий, имеют кривые, начальные уровни которых, как и у редко земельных элементов, ниже величин, соответствующих температурам плавления. Во всем остальном эти кривые тоже обычные. О расширении элементов с отрицательным смещением ниже 4 известно очень мало. Теоретическое развитие еще не расширено до рассмотрения влияния крайне отрицательного характера этих элементов на отношения объема, а эмпирические данные скудны и противоречивы.

— 101 —
Страница: 1 ... 96979899100101102103104105106 ... 308