Однако нелинейная динамика, синергетика, как ее представляют авторы, сегодня не находится на этом уровне обобщений. Она дает пока отдельные примеры, образы поведения сложных нелинейных систем и методы их исследования. Ее можно, пожалуй, сравнить со своеобразной натурфилософией компьютерной эры. Мифы давали в свое время примеры, образцы типичных ситуаций, рекомендации, как следует действовать, когда попытка опереться на логику и рациональные рассуждения не удается. Нелинейная динамика предлагает базовые модели, новые понятия и методы, которые могут быть применимы в данной ситуации, а могут и не быть. Которые могут стать основой построения новой нелинейной познавательной парадигмы, а могут остаться отдельными находками в различных дисциплинах. Приведем пример. Излюбленный образ синергетики --- бифуркационная диаграмма. Теперь представим, что параметр --- время, а переменная А характеризует ключевую переменную, определяющую состояние системы. В точках бифуркации происходит выбор и процессы другого уровня, не отраженные на диаграмме (шумы, случайности, управляющие воздействия могут сыграть ключевую роль). Это значит, что путь развития неединственный, что можно в нужный момент вмешаться в ход событий и изменить его. Будущее оказывается неединственным. Останется ли этот образ метафорой, станет руководством к действию для тех, кто будет определять точку бифуркации и воздействовать на систему, либо окажется основой нового алгоритма или технологии --- зависит от специалистов, которые будут применять общие идеи нелинейной динамики в своей конкретной области. Пока остается констатировать, что эти общие идеи порой оказываются очень полезны. Одна из причин резонанса, который получила нелинейная динамика, состоит в том, что она дает новый взгляд на развитие науки, на возможность описать явления природы. Фундаментальный вопрос состоит в том, почему, обладая весьма скромными возможностями, мы неплохо ориентируемся и во многом успели разобраться за последние 40 веков? Почему иногда среди огромного множества сложных взаимодействующих факторов и сотен тысяч переменных удается выделить наиболее важные процессы и ключевые факторы? Ответ нелинейной динамики состоит в том, что во множестве случаев происходит самоорганизация, связанная с выделением параметров порядка. И нелинейную среду, потенциально обладающую бесконечным числом степеней свободы, удается описать динамической системой с конечным, а иногда и небольшим числом переменных. Рынок с сотнями тысяч агентов и миллионами товаров моделировать с помощью кривых спроса и предложения. (Взгляд на экономику, как на самоорганизующуюся и саморазвивающуюся систему оказывается весьма плодотворным, как показывают работы научной школы А.А.Петрова [19].) — 57 —
|