Самые простые примеры самоорганизации, в которых удалось разобраться лучше, чем в остальных, дают некоторые системы из физики, химии, биологии. События в них развиваются не только во времени, но и в пространстве. Всех их роднит одна черта. Представим себе диффузию, порожденную случайным блужданием множества частиц, вообразим поразительно сложные траектории частиц жидкости или огромное множество химических реагентов, причудливо превращающихся друг в друга, или множество людей, пользующихся городским транспортом. Казалось бы, здесь все совершенно случайно, или, как говорят физики, имеет место хаос на микроуровне. И во всех этих случаях средние величины ведут себя вполне детерминированным образом. Хаос на микроуровне может приводить к упорядоченности на макроуровне. Но какой странной может быть эта упорядоченность! Реакция в пробирке может пойти по колебательному пути --- раствор в пробирке может, например, начать периодически менять свой цвет. Транспортные потоки распределятся в соответствии с вполне определенными строгими законами. А если диффузия происходит в некоторой горящей среде, то могут возникнуть причудливые структуры. Например, такие, как показано на рис.8. На нем представлена пространственная форма волн горения растущей амплитуды, сходящихся к центру симметрии и сохраняющих свою конфигурацию. Может быть, они похожи на таинственные симметриады, вырастающие из океана на планете Солярис? Изучение этих и некоторых других структур, не простое дело. Оно требует разработки новых математических методов и широкого использования компьютеров, однако подчас оказывается очень поучительным. Имея дело с процессами, которые разворачиваются во времени и пространстве, мы сталкиваемся с новым элементом реальности --- формой возникающих структур. Мысли о совершенстве формы, соразмерности гармонии были одним из ключевых мотивов в познании природы. Идея о связи геометрии с идеальными объектами, лежащими в основе мироздания, восходит к Платону. Эта идея была возрождена В.Гейзенбергом, намечавшим контуры будущей единой теории поля и элементарных частиц. Именно в различии формы электронных облаков в странном мире, придуманном Э.Шредингером и другими создателями квантовой механики, кроется разгадка многих парадоксов атомной физики. В той необычной вселенной, где существуют структуры, показанные на рис.8, форма также играет ключевую роль. Она показывает, по каким законам простые структуры могут быть объединены в сложные. Форма определяет существование структуры. Замечательный факт, что для создания сложной структуры, развивающейся во времени, надо верно угадать ее форму. Количество вложенной энергии не играет здесь никакой роли. — 36 —
|