По-видимому, часть исторических явлений (в которых ключевыми являются макроэкономические, демографические и другие медленные процессы) допускает удовлетворительное динамическое описание. В то же время другая часть (ряд политических решений, многие военные столкновения и другие) возвращает нас к ситуации "плоскатиков на сфере" и проблемам теории управления. В соответствии с этим развиваются несколько основных подходов к динамическому прогнозу исторических процессов. В первом, трудности получения "среднесрочного исторического прогноза" (10-20 лет) связывают с тем, что в изучаемой системе имеет место детерминированный хаос. Типичная локальная картина в этом случае представлена на рис.9. Система обладает чувствительностью к начальным данным и бесконечно близкие траектории в ней обычно экспоненциально разбегаются (см. рис.9). Рис. 9. Устойчивость данной траектории x(t) зависит от поведения бесконечно близких траекторий. И действительно, А.Ю.Андреевым и М.И.Левандовским была предложена модель, обладающая странным аттрактором [5]. Для описания забастовочного движения эта модель представляет собой модификацию известной в химической кинетике системы Ресслера, которая использовалась также при описании эпидемий. Построенная динамическая система имеет вид = m (N-X) - bXZ = bXZ - (m+a)Y = aY - (m+g) Z = gZ - mW Здесь N --- общее число рабочих, занятых на предприятиях губернии, X --- число рабочих, еще не воспринявших информацию о забастовке, Y --- рабочие, согласившиеся забастовать, но не ведущие активную агитацию, Z --- рабочие, становящиеся агитаторами, W --- рабочие, отказавшиеся от участия в стачечной борьбе после одной из забастовок. Оказалось, что эта модель вполне удовлетворительно количественно описывает число рабочих, бастовавших во Владимирской губернии в 1895 --- 1905 гг. Любопытно, что одна из базовых моделей нелинейной динамики --- система Ресслера, оказалась весьма удобным и универсальным "строительным блоком" для построения математических моделей в нескольких областях. Другой подход связан с представлением о точках бифуркации исторического процесса. В этой модели считается, что долговременные исторические изменения описываются динамической системой, зависящей от параметра l = -U(x,l)/x, Например, таким параметром может быть "историческое время". При изменении параметра в системе (8) может происходить бифуркация. Малые случайные воздействия при этом могут оказаться решающими при выборе ветви бифуркационной диаграммы. В исторической интерпретации это соответствует возрастанию роли отдельных личностей, появлению возможности влиять на ход исторических процессов с помощью малых воздействий. В терминологии нелинейной динамики, выбор ветви связывается с принципом "возникновения порядка через флуктуации" [16, 18]. В принципе, может быть разработана техника, позволяющая диагностировать точки бифуркации. Приведем пример, иллюстрируюший такой подход. В физике известен феномен критических флуктуаций, когда в точке фазового перехода возникают гигантские случайные отклонения, охватывающие всю систему. Аналогичные явления могут иметь место в точках бифуркации исторического процесса. Наглядный пример этого --- огромный рост тиража и влияния на общественную жизнь в годы так называемой "перестройки" журнала "Огонек". После перехода к новому общественному укладу этот журнал утратил влияние и стал заурядным изданием. Другие примеры дает анализ процессов выбора путей развития в ходе НЭПа [5]. — 102 —
|