Тренировка ума

Страница: 1 ... 116117118119120121122123

Крыса и лабиринт

Суммарное число вариантов - 35. Задача решается, если понять, что число путей, ведущих к любому выбранному квадрату, равно сумме числа путей двух квадратов, из которых мы приходим в выбранный нами квадрат. Используя эту схему, мы подсчитываем возможные варианты.

Круг слагаемых

Вот один из вариантов размещения цифр, который удовлетворяет поставленной задаче.

Радар

Каждое слово должно начинаться с буквы Р. Для каждого Р есть двадцать вариантов написания слова “Радар”. На рисунке всего четыре буквы Р, значит, слово “Радар” можно прочитать восьмидесятью способами.

Банки с печеньем

Возьмите печенье из банки с надписью “Миндальное печенье”. Так как банка надписана неправильно, вы увидите или шоколадное печенье, или овсяное. Допустим, вы достали овсяное. Поменяйте этикетку “Миндальное печенье” на “Овсяное печенье”. В банке, помеченной как “Шоколадное печенье”, должно находиться миндальное, так как сказано, что все банки помечены неправильно. И значит, в банке с этикеткой “Овсяное печенье” находится шоколадное.

Цепь

Самый рациональный способ сделать цепь из 6 кусков по 5 звеньев состоит в том, чтобы распилить все 5 звеньев одного куска и с их помощью соединить остальные 5 кусков. При этом общая стоимость работы составит 1 доллар 30 центов, что на 20 центов дешевле стоимости новой цепи.

Ваши носки

Вам нужно достать из комода только три носка.

Серебряный брусок

Хозяин дома может распилить серебряный брусок в трех местах, разделив его на 4 куска, длина которых будет соответственно 1, 2, 4 и 8 дюймов. В первый день он отдаст рабочему самый короткий кусок. На второй день он отберет у рабочего однодюймовый кусок и даст ему двухдюймовый. На третий день он вновь даст ему однодюймовый. На четвертый день хозяин заберет у рабочего однодюймовый и двухдюймовый кусок и взамен даст четырехдюймовый и так далее.

Цепочка дяди Джейка

Во-первых, взвесьте 16 монет, положив на каждую чашу весов по 8 штук. Если какая-то чаша перевесит, значит, в ней и находится более тяжелая монета. Если чаши уравновесятся, тогда искомая монета среди тех 8, что вы не взвесили. Во-вторых, из кучи, что содержит тяжелую монету, возьмите 6 штук и, разбив их по 3, вновь взвесьте. Если какая-то из чаш весов перевесит, значит, именно среди 3 монет, в ней находящихся, и есть искомая. Если чаши уравновесятся, значит, монета среди двух не взвешенных. В-третьих, произведите последнее взвешивание. Если золотая монета находится в группе из 3 штук, сравните вес двух из них. Если равновесия не будет наблюдаться, вы найдете тяжелую монету. Если равновесие установится, тяжелая монета - оставшаяся.

— 121 —
Страница: 1 ... 116117118119120121122123