Аналогичные соображения справедливы и в отношении процесса поисков доказательства. Осмысленные поиски доказательства не осуществляются таким способом, который был описан выше и который столь характерен для традиционного логического подхода. Дело совсем не в том, чтобы формулировать верные утверждения, вспомнить выученные теоремы и г. д. Подлинное открытие возникает в результате осознания требований, которым должно удовлетворять само доказательство, необходимости привести факты в осмысленную связь. Но в то время, как структура доказательства в нашем примере определения площади параллелограмма является сравнительно простой, в других случаях не так легко найти психологически адекватную, структурно осмысленную процедуру. Здесь настоятельно необходимы творческие поиски 1. 40. Мы обсудили факторы, которые играют важную роль в решении задачи, в достижении цели. Но что можно сказать о самой цели? Часто мыслительные процессы рассматриваются как процессы решения задачи, достиже- 1 В течение нескольких лет я касался этих вопросов в своих лекциях по психологии обучения и исследовал их со своими коллегами. Д-р Джордж Катона рассматривает некоторые из этих во- 107 ния поставленной цели; до сих пор и мы поступали так же. Согласно многим теориям, именно в этом заключается задача мышления. Но разве наши проблемы не повторяются в отношении самой цели? В нашем примере скромной геометрической задачи ситуация вообще является достаточно простой. Здесь доставляет удовольствие сам процесс решения задачи, радует достижение цели, проверка своих умственных способностей. В этом смысле мышление может быть относительно замкнутым процессом. Более того, в некоторых случаях задача сохраняет смысл и в более широком контексте. Так обстоит дело, когда задача на определение площади рассматривается в контексте землемерных работ или когда этот вопрос возникает в более широком контексте геометрического мышления — например, когда понят способ определения площади прямоугольника и встает вопрос об определении площади других фигур. Но в некоторых ситуациях бессмысленно решать задачу определения площади параллелограмма, потому что такая задача не соответствует структуре данной ситуации, потому что эта цель неуместна и ситуация требует других действий. Если в такой ситуации дается это задание или так или иначе возникает вопрос о площади, некоторые люди, не замечая, что требуется в ситуации, начинают определять площадь и слепо следуют намеченной цели. Однако мы часто наблюдаем и разумные реакции, когда испытуемый отказывается решать такую задачу и сосредоточивает свое внимание на том, что действительно важно в данной ситуации 1. — 77 —
|