Точно так же «гуарани имеют 1 числительные лишь до четырех (но у них уже есть выражения, соответствующие латинским singuli, bini, trini, quaterni — по одному, по два, по три, по четыре). Как и абипоны, гуарани, когда их спрашивают относительно предметов, число которых превосходит четыре, тотчас отвечают: «Бесчисленно». Вообще, нам гораздо легче было обучать их музыке, рисованию, скульптуре, чем арифметике. Они все умеют произносить числа поиспански, однако, считая этими числами, они так часто делают ошибки, что им не приходится очень доверять в подобных вещах». Это инструмент, в котором они не чувствуют нужды и применения которого не знают. Им нечего делать с числами помимо тех совокуп- ностей, которые они умеют считать на свой лад. Но если это так, скажут, может быть, то для первобытных людей возможно лишь представление об указанных совокупностях, сохраненное памятью. Самые простые действия, например сложение и вычитание, для них недоступны. Однако, всё не так: эти действия ими производятся. Пра-логическое мышление действует здесь (как и вообще в том, что касается языка) конкретным образом. Оно прибегает к представлению о движениях, прибавляющих единицы к первоначальной сумме или отнимающих эти единицы. Оно обладает, таким образом, орудием, бесконечно менее мощным и сложным, чем отвлеченные числа, но позволяющим производить простые действия. Это мышление ассоциирует заранее координированный ряд движений и 1 Подобным образом австралийские племена, не имеющие числительных больше трех, склоняют в единственном, двойственном, тройственном и множественном числах. 146 частей тела, связанных с движениями, со следующими одна за другой совокупностями, так что, повторяя в случае надобности весь ряд сызнова, оно находит эти совокупности. Например, нужно определить день, в который большое количество племен должно собраться для общего выполнения определенных церемоний: этот день наступит через несколько месяцев, ибо надо много времени для осведомления всех заинтересованных, а равно и для того, чтобы все могли собраться в условном месте. Как поступают в таком случае австралийцы? «Результат мог бы быть получен путем подсчета предстоящих остановок в пути или числа новолуний. Если число, подлежавшее счету, оказывалось большим, то туземцы прибегали к помощи различных частей тела, из которых каждая имела свое название и свое определенное обусловленное место в этой системе счисления. Число перечисленных таким образом частей тела, начиная с мизинца одной из рук, означало такое же число остановок, дней или месяцев, смотря по обстоятельствам (при подсчете указывают сначала части одной стороны тела, а потом другой, если нужно). Гоуитт с полным правом отмечает, что «этот прием окончательно подрывает всякое значение того мнения, будто недостаток числительных в языках австралийских племен объясняется неспособностью туземцев представить себе число, превышающее два, три или четыре». — 133 —
|