Но в этом случае ступенька должна появиться, разрастись и исчезнуть, когда слой полностью достроится. А по мысли Франка, такая ступенька должна быть всегда, не исчезая в процессе роста. Он предположил, что такая ступенька на поверхности есть следствие дефекта объема кристалла. Этот дефект Франк назвал винтовой дислокацией. Именно Франк поселил в кристалле винтовую дислокацию. Проще всего представить себе винтовую дислокацию как некую линию, вокруг которой наслаивается кристалл в виде одной-единственной плоскости, подобно винтовой лестнице. Винтовая лестница часто «навинчивается» на центральный стержень. Вот его и следует считать моделью линии винтовой дислокации. Ступенька на поверхности — это обрыв атомной плоскости, накручивающейся вокруг линии винтовой дислокации. Чуть курьезно говоря, согласно Франку, кристалл, содержащий одну винтовую дислокацию, состоит из одной плоскости. Именно она и достраивается в процессе роста. Согласно Косселю и Странскому, плоскости зарождаются и завершают свой рост; согласно Франку, все время растет одна и та же плоскость. У Косселя и Странского — слоистый рост, у Франка — спиральный. Когда степень неравновесности велика, может осуществляться и механизм слоистого роста, а вот когда она мала — помирить эксперимент с теорией может лишь механизм спирального роста. Мысль теоретика, родившего образ винтовой дислокации, многим вначале показалась фантастической и вызвала к себе настороженное отношение: фантазия, разумеется, необходима для развития науки, но фантазия должна иметь предел. Но когда через несколько лет после работы Франка экспериментаторы доподлинно увидели так называемый спиральный рост, при котором на поверхности растущего кристалла обнаруживается развивающийся по спирали бугорок, настороженное и скептическое отношение к фантазии теоретика сменилось восторгом перед его проницательностью. В наши дни спиральный рост по Франку — азбука теории роста кристаллов, винтовые дислокации в кристалле поселились прочно и, как выяснилось, определяют в его свойствах очень многое. О многом рассказать я не могу. А вот о том, как винтовые дислокации участвуют в пластическом деформировании кристалла, расскажу. Как и в случае краевых дислокаций, это удобнее всего сделать, обсуждая один из простейших типов деформирования, а именно сдвиг одной части кристалла относительно другой. Наличие в кристалле винтовой дислокации, пересекающей поверхность, обусловливает наличие на поверхности ступеньки — это мы уже знаем. Дополним это знание следующим сведением: наибольшая высота этой ступеньки есть вектор Бюргерса дислокации, он замыкает контур, внутри которого находится дислокационная линия. — 65 —
|