Мы подошли к началу лесенки, ведущей в бесконечно интересную проблему формирования дефекта под влиянием облучения. Говорят так: радиационного дефекта. Откажем себе в удовольствии пойти по этой лесенке. Для этого, быть может, представится случай в другой книге, а сейчас, в связи с разговором о треках, поговорим лишь о двух ситуациях, которые отчетливо выяснились при теоретическом исследовании проблемы «суждено ли?». Первая ситуация осуществляется, когда осколок движется в металлическом кристалле, который можно представить как совокупность двух подсистем: свободные электроны и ионы. Все происходящее в этом случае легко понять, учитывая следующее: электроны получают от осколка энергию, почти в 102 раз большую, чем ионы решетки; теплоемкость электронного газа почти в 102 меньше, чем теплоемкость решетки; масса иона почти в 105 раз больше массы электрона. Три приведенные цифры означают, что электроны, получив много энергии и обладая малой теплоемкостью, нагреются до очень высокой температуры, а поделиться ею с ионами, которые в десятки тысяч раз тяжелее, электроны практически не смогут, как не делится своей энергией с «тяжелой» стенкой легкий мячик, который ударяется и отскакивает от нее с практически неизменившейся скоростью, а значит, и энергией. Электроны, которые были поблизости от траектории осколка, благодаря своей подвижности скоро рассеют полученную энергию между себе подобными, а решетка, не получив энергии, останется «холодной», невозмущенной, бездефектной. Точнее говоря, решетка какую-то долю энергии получит. Однако эта энергия будет распределена в таком большом объеме, что нагреется решетка незначительно. Такая неожиданная ситуация складывается в металле: атомный взрыв происходит, а последствий в кристалле никаких! Теоретики это предвидели, экспериментаторы в этом убедились! Говорят так: чистые, совершенные металлы значительно более радиационно стойки, чем, например, диэлектрики. Вторая ситуация осуществляется, когда осколок движется в ионном кристалле типа NаСl. В таком кристалле, как известно, свободных электронов нет. Все они «приписаны» к определенным ионам, которые размещены в узлах решетки. Кристалл состоит из ионов двух сортов: у ионов одного сорта имеется лишний электрон, а у ионов другого сорта одного электрона недостает по сравнению с тем количеством, которое необходимо для нейтрализации заряда ядра. В кристалле они представлены поровну, и поэтому он электрически нейтрален. Заряженный осколок ядра, двигаясь в кристалле, взаимодействует с электронами, встречающимися на его пути. В результате анионы, потеряв один электрон, превратятся в нейтральный атом, потеряв два электрона, — в положительно заряженный ион, а катионы, теряя электроны, будут увеличивать свой положительный заряд. В этом процессе вдоль траектории полета осколка в кристалле образуется цилиндрическая зона с повышенной плотностью положительного заряда. Такая зона может взорваться по причине очевидной: одноименные положительные заряды стремятся отделиться друг от друга, разлететься в разные стороны. А это и означает, что произойдет взрыв. Лучше выразимся осторожнее: может произойти. — 109 —
|