Ну а дальше? Если говорить о повседневном опыте, то он подсказывает нам следующее. Метр поделить можно, сантиметр — можно, миллиметр — можно, микрометр — можно. Значит, можно поделить любое другое сколь угодно малое расстояние. Так рассуждал Зенон около 2500 лет тому назад. Так рассуждает и большинство из нас. Здесь-то и затаилась опасность серьезной ошибки. Природа не всегда следует подобным схемам. Не надо далеко ходить за примерами — взять ту же скорость: один метр в секунду можно удвоить, километр в секунду — можно, тысячу километров в секунду — можно, сто тысяч километров в секунду — можно, двести тысяч... Стоп! В природе не бывает скоростей, больших, чем примерно триста тысяч километров в секунду, т. е. больших скорости света. Как в этом смысле обстоит дело с расстояниями, мы не знаем. Теоретически можно оперировать с отрезками длиной порядка Ю-23 сантиметра. Бывают ли более короткие расстояния? Неизвестно. Вот и ответ на рассуждения Зенона. Они справедливы, впрочем, в той же степени, как и рассуждения современных математиков, лишь до тех пор, пока после очередного деления пополам расстояние не станет меньше 10~23 сантиметра. Дальше просто нельзя рассуждать о том, чего не знаешь. Современный ученый скажет, что задача Зенона некорректна. Некорректна апория об Ахиллесе и черепахе и по другой причине. Согласно теории относительности, которая, кстати» тоже наделала много хлопот нашему повседневному опыту, расстояние зависит от скорости. Ахиллес видит перед собой одно, а судья, выносящий решение об исходе состязания с черепахой,— другое. В таких условиях вообще вопрос: догонит или не догонит? — ставить бессмысленно. Делим пополам Зачем в книге об энергии понадобился рассказ об Ахиллесе и тем более о черепахе — существе медлительном и косном? Чтобы ответить на этот вопрос, вернемся к разделу «Кто выиграл?», где мы подсчитывали количество способов, которыми может быть реализовано какое-либо заданное состояние, илр, как мы назвали эту величину, статистический вес. Рассуждали мы так. Пусть в объеме имеется десять молекул, то бишь шариков, и каждая из них может иметь одну из десяти различных возможных величин энергии. В том, что мы выбрали десять, а не какое-то другое число молекул, нет ничего неправомерного. Законы, которые мы сейчас изучаем, должны быть справедливыми для любого количества вещества, в том числе и для десяти молекул. Но почему каждая из молекул может иметь одну только из десяти различных величин энергии? Если энергия всех молекул равна, скажем, 10 единицам, то ясно, что энергия любой молекулы в этом объеме не может превышать 10 единиц. Это непреложный факт, мы однажды договорились в основу любых рассуждений закладывать несомненность закона сохранения энергии. — 13 —
|