Рис. 13.3. Если вы идете по экватору и все время удерживаете палку параллельно земле по касательной к поверхности, то опишете цилиндр. Если, огибая земной шар, вы перевернете палку на 180 градусов, то опишете более сложную поверхность, имеющую одну, а не две стороны, называемую лентой Мёбиуса Кроме того, формула, которую мы вывели для расчета рациональных кривых на поверхностях K3, дает функцию для генерирования всех чисел, которые вы получаете для рациональных кривых с произвольным количеством узлов. Оказывается, эта функция по существу воспроизводит знаменитые тау-функции , которые были введены в 1916 году индийским математиком и гением-самоучкой Шринивасой Рамануджаном.[267] С тех пор наша функция в сочетании с высказанными Рамануджаном предположениями привела ко многим важным открытиям в области теории чисел. Насколько мне известно, наша работа впервые помогла установить серьезную связь между исчислительной геометрией (предметом расчета кривых) и тау-функцией. Эта связь была закреплена последними работами Юйонг Дзена, молодого математика, недавно приглашенного работать в Гарвард, которого обучал мой бывший студент Юн Ли. Дзен показал, что не только рациональные кривые на поверхности КЗ связаны с тау-функцией, но расчет любых кривых произвольного рода на любой алгебраической поверхности связан с тау-функцией. И Дзен сделал это, доказав гипотезу, высказанную немецким математиком Лотаром Гёттше, который обобщил так называемую формулу Яу-Заслоу для рациональных кривых на поверхностях K3.[268] Новая обобщенная формула, справедливость которой доказал Дзен, носит имя Гёттше-Яу-Заслоу. Несколькими годами ранее бывший мой аспирант А. К. Лью опубликовал доказательство формулы Гёттше-Яу-Заслоу.[269] Но его доказательство, выполненное с помощью сугубо технического, аналитического метода, не дает объяснения в том виде, который устроил бы алгебраических геометров. Таким образом, статья Лью не рассматривается в качестве окончательного подтверждения этой формулы. Доказательство Дзена, основанное на аргументах алгебраической геометрии, получило более широкое признание. Таким образом, благодаря выводу, изначально вытекающему из теории струн, мы поняли, что связь между исчислительной геометрией и тау-функцией Рамануджана, вероятно, глубже, чем предполагалось. Мы всегда ищем похожие связи между различными разделами математики, поскольку эти неожиданные связи часто могут привести нас к новому пониманию обоих разделов. Я подозреваю, что со временем будет открыто больше связей между исчислительной геометрией и тау-функцией. — 254 —
|