В теории Эйнштейна пространство-время задается десятью числами, позволяющими точно описать действие гравитации в четырех измерениях. Для более краткой записи уравнений гравитационного поля принято помещать эти десять чисел в матрицу 4?4, более известную как метрический тензор , — квадратную таблицу, играющую в многомерных пространствах роль «линейки». В нашем случае метрика имеет 16 компонентов, но только 10 из них являются независимыми. 6 чисел из 16 повторяются, потому что гравитация наряду с другими фундаментальными взаимодействиями является по своей природе симметричной. Рис. 1.4. Поскольку мы не знаем, как нарисовать четырехмерное изображение, этот рисунок представляет собой весьма грубое, умозрительное отображение четырехмерного пространства-времени . В основе концепции пространства-времени лежит предположение, что три пространственных измерения нашего мира (представленные здесь в виде осей x , y и z ) полностью равноправны с четвертым измерением — временем. Мы представляем себе время как постоянно изменяющуюся непрерывную переменную , и на данном рисунке представлены моментальные снимки координатных осей, сделанные в различные моменты времени: t1 , t2 , t3 и т. д. Таким способом мы попытались показать, что в целом существуют четыре измерения: три пространственных и еще одно, представленное временем В своей статье Калуца взял за основу общую теорию относительности Эйнштейна и добавил еще одно дополнительное измерение, расширив матрицу 4?4 до размера 5?5. Расширив пространственно-временной континуум до пяти измерений, Калуца сумел объединить две известные на тот момент физические силы — гравитацию и электромагнетизм — в одну единую силу. Для наблюдателя, находящегося в пятимерном мире, который вообразил Калуца, эти силы абсолютно идентичны, что, собственно, и понимается под объединением. А вот в четырехмерном мире они не сольются в одну, а, напротив, будут полностью независимы друг от друга. Можно сказать, что это происходит потому, что обе силы просто не умещаются в одной матрице 4?4. В то же время дополнительное измерение предоставляет достаточно свободного места в матрице для обеих сил, позволяя им быть составляющими одной более всеобъемлющей силы. Рискуя навлечь на себя неприятности, все же скажу, что, по моему мнению, только математик обладает достаточной смелостью, чтобы считать, что переход к пространствам более высокой размерности позволит проникнуть в суть явления, которое до тех пор безуспешно пытались исследовать в пространствах более низкой размерности. Я так считаю потому, что математики все время имеют дело с дополнительными измерениями. Нам настолько удобно ими пользоваться, что мы уже не обращаем на них особого внимания. Вполне возможно, что мы способны манипулировать дополнительными измерениями даже ночью, не выходя из фазы быстрого сна. — 18 —
|