Нельзя, впрочем, забывать, что конкретно-исторический генезис идей Ньютона был значительно сложнее и наряду с отражением идей древних атомистов в ньютоновом учении об абсолютном пространстве можно найти отголоски позднеантичных концепций, которые дошли до Ньютона через кембриджских платоников. Однако не только античная атомистика и позднеантичные концепции пространства воздействовали на развитие механики XVII в. Здесь особенно важно было древне-греческое представление о непрерывном движении. У Галилея эта концепция была тесно связана с воззрениями Архимеда. Дискретная часть вещества — античный атом — движется в непрерывном пространстве, и каждый отрезок его пути может быть разделен на сколь угодно большое число сколь угодно малых отрезков. Эта навеянная механикой Архимеда концепция Галилея открывает дорогу идее непрерывного ускорения и другим фундаментальным идеям классической механики. В конце жизни Галилей писал о сложении криволинейного и прямолинейного движений у Архимеда как о непосредственном истоке своей теории движения. «Я не предполагаю ничего иного, кроме определения движения, я хочу трактовать и рассматривать это явление в подражание Архимеду в его «Спиральных линиях», где, заявив, что под движением по спирали он понимает движение, слагающееся из двух равномерных, одного — прямолинейного, а другого — кругового, он непосредственно переходит к демонстрации выводов. Я заявляю о намерении исследовать признаки, присущие движению тела, начинающемуся с состояния покоя и продолжающемуся с равномерно возрастающей скоростью, а именно так, что приращения этой скорости возрастают не скачками, а плавно, пропорционально времени».87 Идея непрерывного приращения скорости — это не только исходная идея динамики Галилея, но и исходная идея всей динамики XVII в., «Математических начал» Ньютона и динамики следующего столетия. Более того, это центральная идея классической науки в целом. В механике Аристотеля рассматривалась лишь интегральная схема «естественных мест» и «естественных» движений и «насильственных» движений. Но при этом движение не рассматривали от точки к точке и от мгновения к мгновению. Теперь дело изменилось. В науке появилось дифференциальное представление о движении, об изменении скорости в данной точке, об ускорении. Отсюда изучение проблем динамики с помощью анализа бесконечно малых. Как уже говорилось, для динамики XVII в. характерно сочетание логико-математического выведения одного понятия из другого и эмпирического изучения мира. Последнее приобретает характер эксперимента, в котором исследуется, проверяется, устанавливается рационально постижимый механизм процесса. В свою очередь логико-математический путь проходит через экспериментально постигаемые понятия. — 83 —
|