Другие задачи, решенные в трудах советских механиков, по постановке и методам решения в значительной мере тоже относятся к теории регулирования или оптимального управления. В них рассмотрено движение тела переменной массы в гравитационном поле с постоянной и убывающей мощностью, исследован вопрос о влиянии случайных отклонений от оптимальной (в том или другом отношении) программы движения, об учете ограниченности мощности тяги и т. д. Некоторые из этих задач потребовали разработки принципиально новой методики. Один из примеров, приобретающий все большее значение, — вопрос об оптимальном регулировании тяги летательного аппарата. Оптимальность означает экстремизацию того или иного функционала, выражающего либо дальность, либо время полета, либо затрату горючего и т. п. Оказалось, что решение часто надо искать не в классе гладких или кусочно-гладких функций, что соответствовало бы обычной постановке вопроса в вариационном исчислении, а в классе разрывных функций. Так, например, решается вопрос об оптимальном регулировании тяги для достижения максимальной дальности при горизонтальном полете самолета с реактивным двигателем. Абсолютный максимум дальности достигается, как было доказано, на так называемом пунктирном режиме: вылет из положения, для которого заданы масса и скорость самолета, происходит или с выключенными двигателями, или с максимальной тягой, а затем участки разгона последовательно сменяются участками полета с выключенными двигателями. Для определения таких пунктирных режимов В.Ф. Кротов в 1961 г. в своих работах «Об оптимальном режиме горизонтального полета самолета» и «Простейший функционал на совокупности разрывных функций» разработал методику отыскания разрывных решений вариационных задач. Приближенное решение вариационных задач дано в работе А.А. Космодемьянского «Некоторые вариационные задачи теоретической ракетодинамики». Ряд существенных результатов по динамике движения самолета с реактивным двигателем, полученных Б.И. Рабиновичем, вошел в его монографию «Вариационные режимы полета крылатых летательных аппаратов» (1962). За последние два десятилетия в связи с развитием ракетной техники, а особенно после 1957 г. — года запуска первого искусственного спутника Земли, — механика тела переменной массы значительно расширила свою тематику. Развиваются методы решения вариационных задач динамики ракет и самолетов в неклассической постановке. Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко по этому вопросу издали ценную монографию «Математическая теория оптимальных процессов» (1962). Уже упомянутый В.Ф. Кротов, изучая достаточные условия сильного экстремума, разработал новые методы решения вариационных задач и в 1963 г. опубликовал интересную работу «Метод решения вариационных задач на основе достаточных условий абсолютного минимума». — 264 —
|