Механика от античности до наших дней

Страница: 1 ... 216217218219220221222223224225226 ... 306

Дальнейшее развитие метод Бубнова получил в трудах Б.Г. Галеркина (1871—1945), прежде всего в статье «Стержни и пластинки» («Вестник инженеров», 1915). Воспитанник Петербургского политехнического института, Галеркин начал преподавательскую и научную деятельность в 1909 г. Особенно широко развернулось его научное творчество уже после Октябрьской революции.

Метод Бубнова — Галеркина, в некоторых отношениях более общий и простой, чем метод Рэлея—Ритца—Тимошенко, получил очень широкое распространение, применяется он и теперь к ряду задач вариационного исчисления, функционального анализа и математической физики.

В связи с потребностями кораблестроения теорией упругости занимался и А.Н. Крылов. В частности, ему принадлежит подробное исследование вынужденных колебаний стержней постоянного сечения, сперва напечатанное в «Mathematische Annalen» за 1905 г. и затем включенное в упоминавшийся курс дифференциальных уравнений математической физики. Обобщенный для этой задачи метод Пуассона, примененный Пуассоном к свободным колебаниям, Крылов применил к вынужденным колебаниям груза, подвешенного к концу растяжимой нити, и к связанным с этой задачей вопросам — теории индикатора паровой машины, измерению давления газа в канале орудия и к крутильным колебаниям вала с маховиком на конце.

Целый ряд задач теории упругости — по устойчивости стержней и пластин, вибрациям стержней и дисков и пр. — решил в 1911—1913 гг. А.Н. Дынник (1876— 1950). Дынник окончил Киевский политехнический институт в 1899 г. и с 1911 г. состоял профессором Горно-металлургического института в Днепропетровске. Он продолжал успешные изыскания по теории упругости и в советский период.

К 1914 г. относится начало работ по теории упругости Л.С. Лейбензона (1879—1951) — прежде всего по устойчивости упругого равновесия длинных сжатых стержней с первоначальным кручением около прямолинейной оси стержня, а затем по устойчивости сферической и цилиндрической оболочек. Практическое значение первой задачи ясно из того, что всем известные теперь сетчатые башни системы В.Г. Шухова составлены из закрученных прямолинейных образующих.

Исследованиями в области теории упругости занимался в начале XX в. и С.А. Чаплыгин. К 1900 г. относятся его рукописи «Деформация в двух измерениях» и «Давление жесткого штампа на упругое основание», которые впервые были напечатаны лишь в 1950 г. В этих статьях Чаплыгин разработал метод решения плоской задачи теории упругости, основанный на применении теории функций комплексного переменного, и использовал его при решении задачи об эллиптическом отверстии в бесконечной плоскости и задачи о вдавливании прямоугольного штампа в упругую полуплоскость.

— 221 —
Страница: 1 ... 216217218219220221222223224225226 ... 306