Более того, в отличие от традиционных квантовых теорий поля вроде Стандартной модели, суперсимметрия, кажется, готова была взять под свое крыло и гравитацию. Никогда еще за свою историю квантовая физика не стояла так близко к тому, чтобы включить гравитацию в единую теорию поля. Нежданно-негаданно неисполненная мечта Эйнштейна об окончательной теории получила новую жизнь, будто раритетному автомобилю поставили новенький рычащий мотор. На волне всеобщей эйфории, вызванной суперсимметрией (коротко - просто SUSY[11]), вдохновленные теоретики оказались на некотором перепутье. Во-первых, можно было вплотную заняться суперструнами - суперсимметричной теорией струн - и исследовать их фундаментальные свойства, надеясь, что они совпадут с наблюдаемым поведением элементарных частиц. В 1984 г. Грин и Шварц получили важный результат об отсутствии в теории суперструн «аномалий», то есть математических неувязок. Ликованию не было предела. Суперструны, казалось, вырвались вперед на гоночном треке. Непростой задачей для выбравших более отвлеченный путь явилось найти общий язык с экспериментаторами. Вычисления в теории струн зачастую требуют известной сноровки и зависят от многих свободных параметров. В зависимости от их значений меняются предсказания. Кроме того, у струнной теории было несколько разных версий (в середине 90-х Эд Виттен и другие доказали их эквивалентность). Такое многообразие параметров и теорий приводило ученых в недоумение: что же тогда проверять на опыте? Да о чем речь - объекты настолько крохотные (атомное ядро - галактика по сравнению с ними), что нам вряд ли суждено их вскоре «увидеть». К тому же от математических парадоксов в теории суперструн можно избавиться, если только поселить струну в пространстве десяти, а то и больше измерений. Чтобы увязать это с тем фактом, что люди видят только три пространственных и одно временное измерение, теоретики вспомнили об идее шведского физика Оскара Кляйна, предложенной им в 20-х гг. XX в. Они заставили шесть лишних измерений скрутиться в шарик, такой маленький, что мы его не замечаем. На бумаге это получалось отлично, но экспериментаторов оставляло ни с чем. Ссылаясь на невозможность экспериментальной проверки, критики теории струн - среди знаменитостей это Глэшоу и Ричард Фейнман - заговорили о ее зыбкости. Сотрудники лабораторий несколько оживились, когда на свет появился более близкий к жизни вариант суперсимметрии - Минимальная суперсимметричная стандартная модель (МССМ). Ее в 1981 г. выдвинули Савас Димопулос из Стэнфордского университета и Говард Джорджи. Они расширили Стандартную модель за счет дополнительных полей, представив ее в виде, удобном для включения в будущую объединенную теорию. Среди этих полей есть и суперсимметричные двойники, которые можно надеяться обнаружить в эксперименте. — 37 —
|